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Abstract

The fundamental differences between fuzzy regression and ordinary regression are identified in this paper. Fuzzy regression
can be used to fit fuzzy data and crisp data into a regression model, whereas ordinary regression can only fit crisp data.
Through a comprehensive literature review, three approaches of fuzzy regression are summarized. The first approach of fuzzy
regression is based on minimizing fuzziness as an optimal criterion. The second approach uses least-squares of errors as a
fitting criterion, and two methods are summarized in this paper. The third approach can be described as an interval regression
analysis. For each fuzzy regression method, numerical examples and graphical presentations are used to evaluate their
characteristic and differences with ordinary least-squares regression. Based on the comparative assessment, the fundamental
differences between ordinary least-squares regression and conventional fuzzy regression are concluded — that is, ordinary
least-squares regression modeling data with randomness type of uncertainty, and conventional fuzzy regression modeling
data with fuzziness type of uncertainty. In order to integrate both randomness and fuzziness types of uncertainty into one
regression model, the concept of hybrid fuzzy least-squares regression analysis is proposed in this paper, and the details of
its method are derived in the accompanying paper. (© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Regression analysis is one of the most used statis-
tical tools by engineers and scientists. Methods of re-
gression analysis are commonly used to build a model
using collected data containing uncertainties and to
obtain a prediction equation for the entire population.
The computations of regression analysis can be conve-
niently performed by computer programs. Since most
digital computers can only process ordinary crisp num-
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bers, if linguistic data are obtained, symbolic numbers
arc used to represent qualitative terms, for examples,
number 4 for “excellent”, 3 for “very good”, 2 for
“good”, and 1 for “fair”. In many real world problems,
an oversimplification of data could lcave out impor-
tant information for regression models. Some obser-
vations can be described only in linguistic terms (such
as fair, good, and excellent). For such data, fuzzy set
theory provides a means for modeling such linguistic
variables utilizing fuzzy membership functions. And,
fuzzy regression was proposed to deal with fuzzy data.
In contrast to the ordinary regression that is based on
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probability theory, fuzzy regression can be based on
possibility theory [7] and fuzzy set theory [17].

In ordinary regression analysis, the unfitted errors
between a regression model and observed data are gen-
erally assumed as observation error that is a random
variable having a normal distribution, constant vari-
ance, and a zero mean. In fuzzy regression analysis,
the same unfitted errors are viewed as the fuzziness
of the model structure as was initially developed by
Tanaka et al. [16]. Since then, other fuzzy regression
methods have been developed using different optimal
criteria for fuzzy line or curve fitting. Other contribu-
tions in this area are by Celmins [1,2], Diamond [6],
Tanaka [13], Tanaka and Ishibuchi [14], Savic and
Pedrycz [12] and Ishibuchi [8]. In this paper, three
different approaches of fuzzy regression are summa-
rized. First, a fuzzy regression method that is based
on minimizing fuzziness for model-fitting is summa-
rized. Second, fuzzy regression using least squares of
errors as a criterion is introduced. Two methods under
this category are summarized. Third, fuzzy regression
is implemented by using interval analysis.

Numerical examples are presented for each fuzzy
regression method. Since fuzzy regression can accept
crisp data, fuzzy data or a possible mixture of crisp
and fuzzy data, examples of crisp independent (or pre-
dictor) X and crisp dependent (or criterion) Y are pre-
sented, followed by examples of crisp X and fuzzy Y.

Through comparing the results of numerical ex-
amples, the objective of this paper is identifying the
features and limitations of existing fuzzy regression
methods. They are presented along with conclusions
at the end of this paper.

2. Fuzzy regression using minimum fuzziness
criterion

In fuzzy regression, deviations between observed
values and estimated values are assumed to be due
to system fuzziness or fuzziness of regression co-
efficients [16]. This assumption is shared by fuzzy
regression methods described in this paper. The goal
of fuzzy regression analysis is to find a regression
model that fits all observed fuzzy data within a
specified fitting criterion. Different fuzzy regression
models are obtained depending on the fitting criterion
used.

Tanaka et al. [16] proposed the first linear regres-
sion analysis with a fuzzy model. According to this
method, the regression coefficients are fuzzy num-
bers, which can be expressed as interval numbers with
membership values. Since the regression coefficients
are fuzzy numbers, the estimated dependent variable
Y is also a fuzzy number. A fuzzy regression analysis
with only one independent variable X results in the
following bivariate regression model:

Y=4dy+AX, (1)

where A, is a fuzzy intercept coefficient, and A4,
is a fuzzy slope coefficient. Each fuzzy parameter
A~,- =(my,c;) is expressed as symmetrical triangu-
lar membership function, which consists of fuzzy
center m; and fuzzy half-width ¢;. Other membership-
function forms can be used as well.

According to this approach, the fuzzy coefficients
A (i=0, 1) are determined such that the estimated
fuzzy output ¥ has the minimum fuzzy width, while
satisfying a target degree of belief 4. The term / is
referred to as a measure of goodness of fit or a measure
of compatibility between data and a regression model.
Each of the observed data sets, which can be fuzzy
17 or crisp datum ¥;, must fall within the estimated ¥
at / level as shown in Fig. 1. To determine the fuzzy
coefficients 4; = (m;,c;), Tanaka et al. [16] formulated
the fuzzy regression objective as the following linear
programming problem:

minimize S=ncy+c; Y _ |X)| (2)
i=1

subject to ¢y =0, ¢ =0,

ZmX,Hr(l—h)Z cil Xy

;=0

2Yi+(1—h)e fori=1ton (3)

ZmX,, (1~h)Zc,|X,,l

j=0
SYi—(1—~h)e, fori=1ton, (4)

where § is the total fuzziness of the regression model.
Egs. (3) and (4) can deal with observed fuzzy datum
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Fig. 1. Degree of fitting ¥; to given fuzzy datum ¥,.
Y= (Y, e;), where Y, is the fuzzy center, and e, is the a natural extension of fuzzy regression would be the
fuzzy half-width. If an observed datum is crisp, its e is integration of the least-squares criterion into fuzzy re-
zero. Therefore, an ordinary crisp number is a special gression as described in the next section.

case of a fuzzy number.
Since the first fuzzy regression method was pro-

posed, it drew criticism from Celmin§ [1], Chang 3. Fuzzy least-squares regression
et al. [5] and Redden and Woodall [11]. Following
the introduction of the first method, several im- In this section, the development of fuzzy least-
proved versions of fuzzy regression using the mini- squares regression analysis (FLSRA) is described.
mum fuzziness criterion were proposed. Tanaka and Different aspects of fuzzy least-squares regression
Ishibuchi [14] introduced quadratic membership func- were investigated by Celmin$ [1,2], Diamond [6],
tions to obtain fuzzy coefficients. Chang and Lee [4] Savic and Pedrycz [12] and Chang and Ayyub [3].
proposed a method for fuzzy regression with widths Celmin§ [1] defines a compatibility measure between
unrestricted in sign. Tanaka et al. {15] proposed an fuzzy data and a model, and uses this measure as
exponential possibility regression, in which the result a model-fitting criterion. Diamond {6] developed
of fuzzy regression corresponds to the probabilistic a fuzzy least-squares method. Savic and Pedrycz
regression. In these improved methods, the mini- [12] proposed a combined approach for FLSRA by
mum fuzziness is used as the fitting criterion, and integrating minimum fuzziness criterion into the or-
linear programming is kept as the problem-solving dinary least-squares regression. Chang and Ayyub
technique. [3] discussed reliability issues of FLSRA, such as
The main shortcoming of the above method is that standard error and correlation coefficient. In this

the concept of least-squares is not utilized; therefore, section, two methods of FLSRA, as developed by
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Celmin$ [1,2] and Savic and Pedrycz [12], are
summarized.

3.1. Fuzzy least-squares regression using maximum
compatibility criterion

Celmins [1] proposed an approach for fuzzy least-
squares regression, based on a compatibility measure
between data and a fitted model. Defining (X)) and
(X )as the > membership functions of two fuzzy quan-
tities 4 and B, Celming suggested a compatibility mea-
sure between 4 and B as w4, B). For example, if
(X)) and p5(X ) are two normalized triangular mem-
bership functions, then (4, B) can be expressed as
follows and as shown in Fig. 2(a):

A, B) = max min{u; (X), (X))}, (5)

The value of y is between zero and unity. Two ex-
treme cases of the compatibility measure are: y =0, if
the widths of two fuzzy quantities do not overlap as
shown in Fig. 2(b), and y =1, if the centers of two
fuzzy quantities overlap as shown in Fig. 2(c). The
compatibility measure y has a similar purpose as the
degree of belief / in the previous section.

The objective of data fitting according to this
approach is to find a model such that the overall
compatibility between data and a fitted model is at
its maximum. Let y; be the measure of compatibil-
ity between each datum and the fitted model, then a
measure for the overall compatibility is the sum of
squares of the deviations of y;, from unity, i.e., the
objective function for the data is to minimize the sum
of squares of deviations (W) as

m

W= (1-yp) (6)

i=1

According to this approach, the final formula for the
fuzzy least-squares regression using maximum com-
patibility is as follows:

f:/I() +A~1X

=mg+mX £ /¢ + 2c0 X + X2 (7)

The first part of Eq. (7), mo+m X, represents the cen-
terline of fuzzy regression model. The coefficients my

and m, are obtained by a weighted least-squares re-
gression, and the term 1/(datum fuzziness )’ is used as
the weight assigned for each datum. And, the second
part of Eq. (7), i\/c(-; + 2c01X + ¢i X? specifies the
upper and lower fuzzy outer boundary of the regres-
sion model. The ¢y and ¢, are the fuzzy half-widths
of coefficients Ao and 4. According to Celmin§’ [1]
definition the cq, is the fuzzy concordance between
Ay and A,. The concordance between two fuzzy pa-
rameters has a similar meaning as the probabilistic
covariance between two ordinary parameters. Through
iterative computations, the ¢y, ¢(, and ¢y, are obtained
by applying Eq. (7) with a desired compatibility mea-
sure between 0 and 1.

For crisp X and crisp Y data, the fuzzy regression
problem was described in Celmins [2]. Because the
method uses the same assumption of system fuzziness
by Tanaka et al. [16], the resulting regression model
is also a fuzzy equation as Eq. (7). According to this
method, a fuzzy regression equation can fit all crisp
data inside the fuzzy model, and provide a maximum
compatibility. And, the difference between model fit-
ting for crisp data and model fitting for fuzzy data
is in the computational procedure and the numerical
results.

3.2. Fuczy least-squares regression using the
minimum fuzziness criterion

Savic and Pedrycz [12] formulated the fuzzy regres-
sion method by combining the least-squares principle
and minimum fuzziness criterion. The method is per-
formed in two consecutive steps. The first step uses
ordinary least-squares regression to find fuzzy cen-
ter values of fuzzy regression coeflicients. The sccond
step uses the minimum fuzziness criterion to find the
fuzzy widths of fuzzy regression coefficients.

In the first step, a regression line is fitted to the data
using the available information about the center valuc
of the fuzzy observations. The fuzzy data are treated
as simplified crisp data, and the regression analysis is
performed as a ordinary least-squares regression. The
results of the first step are used as center valucs of the
fuzzy regression coefficients.

In the second step, fuzzy coefficients are determined
using the minimum fuzziness criterion. The widths of
the fuzzy coeflicients are determined by Egs. (3)—(5)
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Fig. 2. Compatibility measure. (a) Definition of compatibility measure y between two fuzzy quantities A and B, (b) » =0, (c) v=1

as the minimum fuzziness method with the difference
of using the fuzzy centers of regression coefficients
resulting from the first step.

4. Interval regression

According to this method, the fuzzy data and fuzzy
regression coefficients are treated as interval num-
bers. The interval operations [9,10] are applied in
fuzzy regression, therefore called interval regression
analysis [8]. The fuzzy regression coefficients are de-
termined such that all fuzzy outputs are within a fuzzy
regression model. An interval regression for crisp X
and crisp Y, is shown in Fig. 3(a). An interval re-
gression model for crisp X and fuzzy Y, is shown
in Fig. 3(b). For ¥ = 4y + A, X, the following lin-
ear programming formulation is used to solve for the

fuzzy regression coefficients /3() =(mg.cq) and A | =
(my,cr):
n
minimize #cy + ¢ ZX,- (8)
i

subject to ¢y >0, and ¢; >0,
(mg —co) + (my —c)X; <Y
for i=1to n, (9)
(mo +co) +(m +c)X; 2 Y

for i=1to n, (10)

where Y; | and Y are the lower and upper limits for
each fuzzy datum, respectively. The objective function
of Eq. (8) results in the minimization of the total fuzzy
widths. The constraints, Egs. (9) and (10), are used to
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Fig. 3. Interval regression models. (a) Interval regression model
for crisp X and crisp Y, (b) Interval regression model for crisp
X and fuzzy Y.

confine all the observed fuzzy data within the fuzzy
regression model.

The above formulation is called a minimization
problem according to Ishibuchi [8]. Besides, a max-
imization problem for interval regression was also
described in Ishibuchi [8]. To the contrary, the maxi-
mization problem is based on confining the estimated
Y within the observed ¥;. Only the minimization
problem is discussed in this section.

5. Numerical examples

Numerical examples are used in this section to il-
lustrate the fuzzy regression models that are summa-
rized in previous sections. The following data pairs
of (X;:Y;; i=1,2,...,8) are used to demonstrate the
crisp X and crisp Y data case [8]:

X : Y] =[(2:14),(4:16),(6:14),(8:18),
(10:18),(12:22),(14:18),(16:22)).
an

By adding 1.0to ¥;, the above data are fuzzified to
produce the case of crisp X and fuzzy Y data case as
follows:

X, Y 1=[(2:(14,1)),(4:(16,1)),(6:(14,1)),
(8:(18,1)),(10:(18,1)),(12:(22.1)).
(14:(18,1)),(16: (22, 1))]. (12)

The two data cases, Eqs. (11) and (12), are used in
this section to demonstrate the fuzzy regression meth-
ods. The results of each fuzzy regression model is
compared to the results of the ordinary least-squares
regression. And, a comparative discussion of fuzzy
regression methods is provided at the subsequent
section.

5.1. Crisp X and crisp Y data case

For ordinary crisp X and crisp Y data, the following
ordinary least-squares regression equation is used as
a benchmark for the fuzzy regression models and the
fuzzy least-squares regression models:

P= Ao+ AX =12.93 + 0.54X. (13)

Besides the regression equation, reliability mea-
sures are also important for regression analysis. They
are the standard deviation of observations S, =3.11,
the standard error of estimate S. = 1.79, and the cor-
relation coefficient R = 0.84.

5.1.1. Fuzzy regression model using minimum
fuzziness criterion

According to this method, each datum is translated
into two constraints, Egs. (3) and (4). Eight data pairs
of Eq. (11) generate 16 constraints. The objective
function, Eq. (2), is to minimize the total fuzzy widths
of the regression coeflicients. Therefore, the linear pro-
gramming formulation of Egs. (2)—(4), can be solved
to obtain the fuzzy centers and the fuzzy half-widths
of regression coefficient. Two cases of degree of be-
lief, #=10.0 and 0.70, were solved, and their fuzzy
regression models are listed below. .

(a) For h=10.0:

Y = Ay + A,.X =(12.00,1.00) 4 (0.63,0.13).X, (14)
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where (12.00,1.00) is a fuzzy intercept with a center
value of 12.00 and half-width of 1.00; and (0.63,0.13)
is a fuzzy slope with center value of 0.63 and half-
width of 0.13.

(b) For h=0.70:

Y =dp+ 41X =(12.00,3.33) 4+ (0.63,042)X. (15)

The results of Egs. (14) and (15) were compared to
the results of the ordinary least-squares regression of
Eq. (13) by plotting them in Fig. 4. From the numer-
ical results, several observations can be made. For
different degrees of belief, the fuzzy center values
remain unchanged; while the higher the degree of be-
lief, the fuzzier the fuzzy regression model. Therefore,
when £ equals 0, the fuzzy regression model has the
narrowest fuzzy widths among all / between 0.0 and
1.0. From Egs. (14) and (15), the centerline equation
of fuzzy models is ¥ =12.00 + 0.63X, which is
different from the ordinary least-squares regression

equation, i.e., ¥ = 12.93 + 0.54X. Such difference is
also shown in Fig. 4.

5.1.2. Fuzzy least-squares regression model using
maximum compatibility criterion

According to this method, crisp data are fitted into
a fuzzy regression model at a specified compatibility
measure y. The computation of FLSRA using maxi-
mum compatibility criterion is achieved by an itera-
tive procedure. For comparison purposes, two values
of compatibility measure y=0.0 and 0.7 were used,
and the corresponding results of FLSRA are listed as
below.

(a) y=0.0:

YZM0+M1X:E \/C0+2C()1X+CIX2

=12.55+ 0.59X

+1/25.67 + 2(— 2.49)X + 0.28X2. (16)

A Observed crisp data
————— Center line of fuzzy model
= = = =Fuzzy outer boundary, h = 0.0
------- Fuzzy outer boundary, h=0.7
Ordinary least-squares regression

351

30 A

10 12 14 16
X

Fig. 4. Fuzzy regression model using minimum fuzziness criterion for crisp X and crisp Y.
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A Observed crisp data
————— Center line of fuzzy model
= = = = Fuzzy outer boundary, y = 0.0
------ Fuzzy outer boundary, y = 0.7
Ordinary least-squares regression

40+

351

30 4

Fig. 5. Fuzzy least-squares regression model using maximum compatibility criterion for crisp X and crisp Y.

(b) y=0.7:

Y =mo+mX £/co+ 2c0 X + 1 X2
=12.55 + 0.59X
+1/285.22 + 2(—27.68)X + 3.08X2. (17)

The results of Eqs. (16) and (17) include two parts.
The first part of each formula is the centerline equa-
tion; and the second part of each formula is the two
parabolic curves for upper bound and lower bound of
the fuzzy regression model. The results of Egs. (16)
and (17) were compared with ordinary least-squarcs
regression by plotting them in Fig. 5. From the numer-
ical results, one can observe similar properties as for
the method of minimum fuzziness. First, the center-
line equation remains the same for different compati-
bility levels. The higher the desired compatibility level
between data and model, the larger the fuzzy width.
When y = 0.0, the fuzzy regression model has the nar-

S B e . R X T e P

rowest fuzzy width among all 7 values between 0.0
and 1.0. Secondly, the centerline equation is different
from the ordinary least-squares regression equation,
i.e., Eq. (14). This is due to the fact that the maximum
compatibility criterion minimizes the squares of (1 —
compatibility (y)). However, in ordinary least-squares
regression, the fitting criterion is to minimize the sum
of squares of (observed value — predicted valuc).

5.1.3. Fuzzy least-squares regression model using
minimum fuzziness criterion

As was previously described, therc are two steps
in calculating fuzzy regression coefficients. First,
the fuzzy centers are obtained from the ordinary
least-squares regression. The results are the same as
Eq. (13). Second, substituting these fuzzy centers into
the linear programming problem of Egs. (2)—(4), the
fuzzy widths of regression coefficients can be deter-
mined. The two cases of #=0.0 and 0.7 are shown

T ) i T ol -
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A Observed crisp data
= = = =Fuzzy outer boundary, h = 0.0
------- Fuzzy outer boundary, h = 0.7
Ordinary least-squares regression and center line of fuzzy model

35

Fig. 6. Fuzzy least-squares regression model using minimum fuzziness criterion for crisp X and crisp Y.

herein.
(a) For h=0.0:

Y=Ady+A4X =(1293,1.75) + (0.54,0.07)X. (18)
(b) For h=0.70:
Y=Ay+ 41X =(12.93,5.83) + (0.54,023)X. (19)

The results of Egs. (18) and (19) were compared
to the results of ordinary least-squares regression of
Eq. (13) by plotting them in Fig. 6. From Egs.
(18) and (19), the centerline equation of fuzzy
models is the same as the ordinary least-squares
regression equation, i.e., ¥ = 12.93+0.54X. Since the
minimum fuzziness criterion is used in this method,
Egs. (18) and (19) also show the same property as
Egs. (16) and (17), i.e., the higher the degree of
belief A, the fuzzier the regression model. However,
in any case, the results of the fuzzy least-squares re-
gression do not approach the results of the ordinary

least-squares regression as / approaches 0. Intuitively,
the fuzzy least-squares regression should produce the
same results of the ordinary least-squares regression,
as h approaches 0.

5.1.4. Interval regression model

The objective of the interval regression method is to
find the minimum width model that contains all data
points. Applying Egs. (8)—(10) to the crisp X and
crisp ¥ data example, the following interval regression
model was obtained:

Y = Ay + AX =(12.00,1.00) + (0.63,0.13).X. (20)

This interval regression model was compared to the
ordinary least-squares regression model of Eq. (13)
by plotting them in Fig. 7. It can be observed that
all data points are included within the interval regres-
sion model. Also, Eq. (22) is identical to Eq. (16), the
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} ————— Center line of fuzzy model

[ = = = = Fuzzy outer boundary of interval regression

Observed crisp data

Ordinary least-squares regression

Fig. 7. Interval regression model for crisp X and crisp Y.

fuzzy regression equation using the minimum fuzzi-
ness criterion with #=0.0.

5.2, Crisp X and fuzzy Y data case

Since the ordinary least-squares regression only ap-
plies to crisp data, the crisp X and fuzzy Y data can
be analyzed by only fuzzy regression and fuzzy least-
squares regression methods. However, Eq. (16) of the
ordinary least-squares regression is still used for com-
parison purposes.

5.2.1. Fuzzy regression model using minimum
fuzziness criterion

According to this method, the linear programming
problem of Egs. (3)—(5) is solved to obtain the fuzzy
centers and the fuzzy widths of regression coefficients.
Also, Egs. (4) and (5) provide a means to include
fuzzy Y data, in terms of A. Two cases of #=0.01

R R

and 0.70 were solved, and their results are reported
herein.
(a) For h=0.0:

Y =Ady+A.X =(12.00,2.00) + (0.63,0.13)X. (21)
(b) For h=0.70:
Y =dy+AX =(12.00,433) + (0.63,042)X. (22)

The resuits of Eqgs. (21) and (22) were compared
to the results of ordinary least-squares regression of
Eq. (13) by plotting them in Fig. 8. The fuzzy regres-
sion model has similar properties to the example of
crisp X and crisp Y. For different degrees of belief 4,
the fuzzy center values remain the same. The higher
the degree of belief 4, the fuzzier the fuzzy regres-
sion model. When % approaches 0, the fuzzy regres-
sion model has the narrowest fuzzy widths among all
h values between 0 and 1.

“ - A AR il <5~
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i Observed crisp X and fuzzy Y data
————— Center line of fuzzy model
= = = = Fuzzy outer boundary, h = 0.0
------- Fuzzy outer boundary, h = 0.7
Ordinary least-squares rgression

35 1

30 4

X

Fig. 8. Fuzzy regression model using minimum fuzziness criterion for crisp X and fuzzy Y.

5.2.2. Fuzzy least-squares regression model using
maximum compatibility criterion

Two cases of compatibility measures y=0.0 and
0.7 were solved, and their results of FLSRA are listed
below.

(a) y=0.0:

5

= mo+mX + \/c(z) +2c01X + c3X?
= 1293 + 0.54X
+1/9.18 + 2(— 0.81)X + 0.09X2. (23)

(b) y=0.7:

7= mo+mX £ \[c} + 2e0X + X2
= 12.93 +0.54X
1+1/20736 + 2(—1830)X + 203X2.  (24)

The results of Eqs. (23) and (24) were compared to
the results of the ordinary least-squares regression of
Eq. (13) by plotting them in Fig. 9. From the numerical
results, several observations can be made. First, the
centerline equation is identical to the ordinary least-
squares regression equation of Eq. (13). Second, the
higher the desired compatibility level, the wider the
fuzzy width. When y = 0.0, the fuzzy regression model
has the narrowest fuzzy width among all v between
0.0 and 1.0.

It is noted that the centerline equations of Egs. (23)
and (24) are the same as the ordinary least-squares re-
gression equation, i.e., ¥ = 12.93 + 0.54.X. According
to Celmins [1,2] and the discussion of Section 3.1, for
fuzzy data, Celmins uses the ordinary least-squares
criterion for the centerline equation and the maximum
compatibility criterion for the fuzzy range. Therefore,
the centerline equation of fuzzy model is the same as
the ordinary least-squares regression equation.

- —
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i Observed crisp X and fuzzy Y data
= = = =Fuzzy outer boundary, y = 0.0

----- Fuzzy outer boundary, y = 0.7
Ordinary least-squares regression and center line of fuzzy model

35 1

30 A

10 12 14 16
X

Fig. 9. Fuzzy least-squares regression model using maximum compatibility criterion for crisp X and fuzzy Y.

5.2.3. Fuzzy least-squares regression model using
minimum fuzziness criterion

In this case, the middle values of fuzzy regression
coefficients are determined by simplifying the ¥ fuzzy
values as crisp numbers, and solved by the ordinary
least-squares regression. The results are certainly the
same as Eq. (13). Then, the fuzzy half widths of
regression coefficients are determined by solving the
linear programming problem of Egs. (2)—(4). The
following two cases of A= 0.0 and 0.7 were used, and
their fuzzy least-squares regression models are listed
below.

(a) For h=0.0:

Y =dy+ A X = (12.93,1.07) + (0.54,021)X. (25)
(b) For h=0.7:
V= Ay +AX =(12.93,2.833) + (0.54,0.567)X.
(26)

The results of Eqs. (25) and (26) were compared
to the results of ordinary least-squares regression of
Eq. (13) by plotting them in Fig. 10. In this method,
the center values of the fuzzy observed data, which
are crisp numbers, are used to obtain the fuzzy centers
of the regression coefficients. Since the least-squares
criterion is used, the results are identical to the or-
dinary least-squares regression. Also, since the mini-
mum fuzziness criterion is used, the fuzzy models get
fuzzier as h approaches 1.0.

5.2.4. Interval regression model

Applying Eqgs. (8)—(10) to the crisp X and fuzzy
Y data example of Eq. (12), the following interval
regression equation was obtained:

Y =Ady+ 41X =(12.00,2.00) + (0.63,0.13)X. (27)

The results of Eq. (27) in comparison with ordinary
least-squares regression of Eq. (13) were plotted in

s R A T SO iinl 5
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i Observed crisp X and fuzzy Y data
= = = =Fuzzy outer boundary, h = 0.0
------- Fuzzy outer boundary, h=0.7
Ordinary least-squares regression and center liner of tuzzy model

35 4

30 1

X

Fig. 10. Fuzzy least-squares regression model using minimum fuzziness criterion for crisp X and fuzzy Y.

Fig. 11. It can be observed that all fuzzy data fall
within the interval regression model. Also, Eq. (27)
is identical to Eq. (21), the fuzzy regression equation
using the minimum fuzziness criterion with 4 = 0.0.

6. Summary and discussion

A comprehensive literature review on fuzzy regres-
sion is provided in this paper. As a result of the re-
view, four fuzzy regression methods are described and
illustrated using numerical examples. Both crisp X
and crisp Y data, and crisp X and fuzzy Y data are
used to demonstrate each fuzzy regression method. For
comparison purposes, the fuzzy regression equations
using crisp X and crisp ¥ data are listed in Table
1. The fuzzy regression equations using crisp X and
fuzzy Y data are listed in Table 2. Based on the com-
parison, their results are summarized and discussed in
this section.

Except for the method of FLSRA using maximum
compatibility criterion, all other fuzzy regression
methods use linear programming (LP) in estimating
the fuzzy coefficients in the resulting models. For
simplicity, only eight sets of data (sample sizes) are
used in the numerical examples. As the number of
data sets increases, the following two difficulties in
using linear programming (LP) to estimate fuzzy
cocflicients can result:

1. Linear programming formulation: Each data
set results in two constraints in the fuzzy regression
formulation. As the number of data sets increase, the
number of constraints increases proportionally. This
increase might result in computational difficulties
using LP software or computers. Also, when adding
to or removing from the independent variables, the
whole set of constraints must be reformulated. The
resulting inconvenience might limit experimenting
with variables to obtain the optimum number of in-
dependent variables in regression analysis. Therefore,
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i Observed crisp X and fuzzy Y data
————— Center line of fuzzy model
= = = = Fuzzy outer boundary of interval regression

Ordinary least-squares rgression

304

Fig. 11. Interval regression model for crisp X and fuzzy Y.

Table 1

Fuzzy regression equations using crisp X and crisp Y data

Fuzzy regression method

Regression equation

A. Fuzzy regression using the

B.

C.

minimum fuzziness criterion at 4 =10.0

Fuzzy regression using the
minimum fuzziness criterion at 2z =0.7

Fuzzy least-squares regression using the

maximum compatibility criterion at y=0.0

. Fuzzy least-squares regression using the

maximum compatibility criterion at y =0.7

. Fuzzy least-squares regression using the

minimum fuzziness criterion at 42 = 0.0

. Fuzzy least-squares regression using the

minimum fuzziness criterion at A =0.7
Interval regression

Ordinary least-squares regression

¥ =(12.00,1.00) + (0.63,0.13)X
¥ =(12.00,3.33) + (0.63,0.42)X

¥ =12.55+ 0.59X

£4/2.567 + 2(— 249)X + 0.28X2
Y =1255+ 059X

+1/28522 4 2(— 27.68)X + 3.08X2
7 =(12.93,1.75) + (0.54.0.07)X

¥ =(12.93,5.83) + (0.54,0.23)X

¥ =(12.00,1.00) + (0.63,0.13)X
7Y =12.93 + 0.54X
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Table 2
Fuzzy regression equations using crisp X and fuzzy Y data

Fuzzy regression method

Regression equation

A. Fuzzy regression using the
minimum fuzziness criterion at 4= 0.0

B. Fuzzy regression using the
minimum fuzziness criterion at #=10.7

C. Fuzzy least-squares regression using the
maximum compatibility criterion at y = 0.0

D. Fuzzy least-squares regression using the
maximum compatibility criterion at y=0.7

E. Fuzzy least-squares regression using the
minimum fuzziness criterion at £ = 0.0

F. Fuzzy least-squares regression using the
minimum fuzziness criterion at # = 0.7

G. Interval regression

H. Ordinary least-squares regression

¥ =(12.00,2.00) + (0.63,0.13)X

¥ = (12.00,4.33) + (0.63,0.42).X

Y =1293 + 054X

£1/9.18 + 2(— 0.81)X +0.09.x2
Y =12.93 +0.54X

£1/207.36 + 2(— 1830)X + 203X
¥ =(12.93,1.07) + (0.54,021)X

¥ =(12.93,1.07) + (0.54,021)X

¥ =(12.00,2.00) + (0.63,0.13)X
Y =12.93 + 0.54X

the formulation of linear programming can limit the
use of fuzzy regression.

2. Sign of unknown variables: The LP formulation
restricts the sign of unknown variables to be non-
negative. The nonnegative condition is a requirement
in solution procedures of the LP formulation. For a
fuzzy coefficient A = (m, c), while the fuzzy width ¢
remains positive or zero, the fuzzy center can be pos-
itive or negative. Unless the explicit influence of an
independent variable to the outcome is known, fuzzy
coeflicients can be positive or negative. Therefore, the
unknown fuzzy center values have to be presented
as a linear combination of two nonnegative vari-
ables. That is, an unknown variable m is presented as
m=m"—m~,where m™ and m~ are both nonnegative
variables. The sign of the unknown variable is then
determined by the difference of two nonnegative num-
bers. The nonnegativity requirement increases the
number of unknown variables. This creates another
problem for the LP formulation, particularly when
the number of data sets is large.

Besides the possible difficulties in using the LP for-
mulation, the limiting behavior of the fuzzy regression
methods needs to be examined. The limiting behav-
ior is defined as when fuzziness is decreased in the
fuzzy regression, the results of the fuzzy regression

should approach the results of the ordinary regression.
However, the minimum fuzziness criterion and the
maximum compatibility criterion generate a fuzzy re-
gression model, where the higher the # (or y) value,
the larger the fuzzy width. When 4 (or y) equals 1.0,
the fuzzy regression models have the largest fuzzy
width. In any case, the fuzzy regression models do not
approach the ordinary least-squares regression mod-
els as & (or y) approaches its limiting values. The lack
of this property has unfortunately segregated the use
of fuzzy regression from the well-received ordinary
least-squares regression. For the same reason, the use
of fuzzy regression methods has drawn some criticism
from statisticians, for example, [11]. Nevertheless, it
is our belief that fuzzy regression and ordinary re-
gression should be integrated rather than segregated.
The segregation is a limitation to the fuzzy regression
methods.

In interval regression analysis, Eq. (20) is the same
as Eq. (14) for crisp data, and Eq. (27) is the same
as Eq. (21) for fuzzy data. Therefore, the interval re-
gression analysis is a special case of the minimum
fuzziness method when / equals zero. However, the
interval regression analysis presents a new concept for
the fitting criterion, i.e., confining all fuzzy data within
a fuzzy regression model. Tanaka and Ishibuchi [14]




202 Y.-H.O. Chang, B.M. Ayvub/ Fuzzy Sets and Systems 119 (2001) 187-203

used the same fitting criterion for nonlinear fuzzy re-
gression by a neural networks technique.

After performing regression analysis, there is a need
to evaluate reliability measures for the corresponding
regression equation. Reliability measures for fuzzy re-
gression are discussed by Chang and Ayyub [3].

7. Conclusions

According to the numerical examples and the dis-
cussion, fuzzy regression methods are based on a
system fuzziness assumption, and presents different
results from ordinary regression. The contrast be-
tween fuzzy regression and ordinary regression has
been due to the difference in views on the meaning
of deviations between observed values and estimated
values. In ordinary regression, the deviations are
viewed as random errors due to observation inconsis-
tency. In fuzzy regression, the deviations are viewed
as fuzzy errors due to system fuzziness. Both fuzzy
regression and ordinary regression only consider part
of the totality of uncertainty, In fact, randomness
and fuzziness are two different kinds of uncertainty,
co-existing in a regression analysis. In ordinary re-
gression analysis, probability theory is used to model
random errors, and the result is presented as a ordi-
nary regression equation. On the other hand, fuzzy
set theory can be used to model fuzzy errors, and
the result can be presented using a fuzzy regression
equation.

Ordinary regression analysis provides a suitable tool
for dealing with crisp observed data by analyzing the
random errors between estimated values and observed
values. In ordinary regression, crisp data are consid-
ered to include random errors, which are different from
fuzzy errors in fuzzy data. Fuzzy regression analysis
provides a way to model observed fuzzy data, such
as linguistic descriptions of the type: excellent, very
good, and good. If data contain fuzziness, then fuzzy
regression needs be used. However, when the data
are made to approach a crisp state in fuzzy regres-
sion analysis, the results of fuzzy regression should
approach the results of ordinary regression. But, such
a property does not exist in currently used fuzzy re-
gression methods. The reason is that fuzzy regression
uses the system fuzziness assumption as a replacement
of the randomness assumption in ordinary regression.

The fuzziness of the data is treated as a substitute to
the randomness in data, rather than an addition to the
randomness in the data. Based on this assumption,
fuzzy regression models are the results of data fuzzi-
ness and system fuzziness. Therefore, different fitting
criteria need to be used for a fuzzy regression model.
Consequently, even when all data are crisp, fuzzy re-
gression can still provide a fuzzy model containing
the assumed system fuzziness [16].

In conclusion, randomness and fuzziness are two
different kinds of uncertainty that co-exist in a regres-
sion analysis. Both randomness and fuzziness should
add up to the total uncertainty in a regression model.
A complete regression analysis should include both
random and fuzzy types of uncertainty. But, fuzziness
type of uncertainty exists only when regression data
contain fuzziness.

In order to include both randomness and fuzziness
into a regression analysis, a need for developing new
regression method exists. Therefore, a new concept of
hybrid regression analysis is proposed and devcloped
in the accompanying paper. The reliability measures
of fuzzy regression and hybrid regression are also in
need of further development.
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