MODELING UNCERTAINTY IN PREDICTION OF PIER SCOUR

By Peggy A. Johnson' and Bilal M. Ayyub,” Members, ASCE

ABSTRACT: Fuzzy regression is used to investigate the modeling uncertainty in the prediction of bridge pier
scour. Fuzzy bias factors, which describe the bias between observed field data and scour estimates based on
equations developed from laboratory data, were estimated. The bias exists because of the use of small-scale
laboratory results to model large-scale, real-world problems. Fuzzy regression is a method of calibrating fuzzy
numerical coefficients in a linear equation. Since the regression coefficients are fuzzy parameters, the output, in
this case scour depth, is also a fuzzy number. The fuzzy bias factors developed from the fuzzy regression
equations are compared for a variety of input data. The fuzzy bias factor provides useful information in the
application of bridge pier scour equations currently available to engineers. The results of this study can be used
by experimentalists in the interpretation of small-scale laboratory test results and by practicing engineers to

adjust scour estimates.

INTRODUCTION

There are nearly 400,000 bridges over waterways in the
United States (Harrison and Morris 1991). At many of these
bridges, erosion of channel beds has developed around the pier
foundations. As a result, a high percentage of bridge failures
in recent years have been attributed to scour. Pier scour, the
erosion of the streambed in the vicinity of pier foundations,
may eventually undermine the pier foundations and cause
bridges to become unstable. :

Engineers are currently assessing scour conditions at exist-
ing bridges and determining the need for scour mitigation.
They are also responsible for the design of new bridges that
should be safe from scour. To accomplish these tasks, engi-
neers need to estimate the expected maximum scour depth.
The engineer must rely on experience and available scour
equations to make decisions regarding (1) the appropriate foot-
ing depth for a new pier; and (2) the need for scour mitigation
at new and existing piers.

Commonly used scour equations and models are based on
laboratory data and are valid only for noncohesive channel
beds of infinite depth and steady-state flow. They do not ac-
count for many variables that are typically encountered in a
field setting. Although the derived equations work quite well
for the laboratory setting, the use of these equations in the
field is uncertain because of the greatly simplified laboratory
conditions, a limited range of data, the use of ratios, and dis-
tortions in the physical model due to sediment size. Therefore,
the models contain considerable uncertainty at the field scale.

Since scour prediction equations can result in estimates of
scour that are different from observed field values, an assess-
ment of this difference is needed. The difference can be con-
sidered modeling uncertainty and can be expressed in the form
of bias factors between predicted and observed field values.
In this study, fuzzy regression is used to quantify the bias that
results when laboratory-based scour models are used for field
applications. Fuzzy regression is used in this application for a
variety of reasons. First, this method of calibrating a fuzzy
problem is quite flexible and capable of accounting for various
uncertainties. Fuzzy regression can be used to combine infor-
mation from crisp data points with assumed relationships
based on engineering experience and judgment, as shown in
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Fig. 1. The crisp data primarily include experimental results,
whereas the fuzzy data can be based on judgement. Second,
the technique is useful in modeling fuzzy problems. The
method yields intervals for the dependent variable in which
the estimated dependent variable is expected to occur. These
advantages are expanded upon in the following sections.

TYPES OF UNCERTAINTY

Uncertainties in engineering systems can be mainly attrib-
uted to ambiguity and vagueness in defining the architecture,
parameters, and governing prediction models for the systems.
The ambiguity component is generally due to noncognitive
sources. These sources include (1) physical randomness; (2)
statistical uncertainty due to the use of sampled information
to estimate the characteristics of system parameters; (3) lack
of knowledge of the system or process; and (4) modeling un-
certainty that results from simplifying assumptions in analyt-
ical and prediction models, simplified methods, and idealized
representations of real processes. The vagueness related un-
certainty is due to cognitive sources that include (1) the defi-
nition of system parameters, for example, structural perfor-
mance (failure or survival), quality, deterioration, skill and
experience of construction workers and engineers, environ-
mental impact of projects, and conditions of existing struc-
tures; (2) other human factors; and (3) definition of the inter-
relationships among the parameters of the problems, especially
for complex systems. Other sources of uncertainty can include
conflict in information, and human and organizational errors.
Statistical regression accounts for ambiguity; fuzzy regression,
described in the next section, accounts for vagueness.

LINEAR FUZZY REGRESSION

Fuzzy regression is a method of calibrating fuzzy numerical
coefficients (Kaufmann and Gupta 1985) in a linear equation.
This method was developed by Tanaka et al. (1982) and has
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been used primarily for cases in which too few data points
were available for a standard statistical regression. In fuzzy
regression, the regression parameters are fuzzy numbers with
central values and ranges described by the degree of accep-
tance of the values of the parameter. Since the regression pa-
rameters are fuzzy numbers, the dependent variable is also a
fuzzy number (Bardossy et al. 1990). The objective of fuzzy
regression is to minimize the vagueness of the dependent var-
iable y (Bardossy 1990; Bardossy et al. 1990). A fuzzy linear
regression results in the following model:

Y* = AFX, + AFX, + - + AZX, (1)

where an asterisk denotes a fuzzy number; and A} = a fuzzy
parameter consisting of the ordered pair (w,, ¢,), o, being the
center of fuzzy parameter A}, and ¢, the width or tolerance of
the coefficient, that is, fuzziness of the parameter (Heshmaty
and Kandel 1985), for k = 1, 2, ..., n. Fig. 2 shows the
membership function of a fuzzy number A¥. For any value
o, the corresponding k' is the degree of belief that this value
is taken by A¥. A central assumption of fuzzy linear regression
is that the residuals (i.e., the difference between the predicted
and observed values) are due to fuzziness of the system
parameters.

The objective of a linear fuzzy regression can best be met
by minimizing the sum of the widths of the fuzzy regression
coefficients, that is, min 2¢,. A degree of fitting (or belief) or
level of credibility 2 must also be established. The degree of
fitting can be thought of as a threshold value such that the
fuzzy number Y* must include the observed value Y at a de-
gree of belief of at least 4. This is shown in Fig. 3. Bardossy
et al. (1990) recommend 0.5 < k& < 0.7. By increasing A, the
values of ¢, increase. Bardossy et al. (1990) showed that fuzzy
regression analysis can be reduced to the following linear pro-
gramming problem, assuming triangular membership functions
for AF:

minimize: J = 2 C @
k]
subject to:

A-hD alxl+ D ax=y + (1 —he  (3a)
k=] =1

A—h D alxl — D axa= -y + (1~ he (3b)
kel Jom 1

for all samples i, where n = number of variables; x, = kth
variable in the ith sample point; e, = width of the ith sample
point; and ¢, = 0. As an example, a data set with a sample
size of 10 will require a set of 20 constraints, according to (3).
In (3), all independent variables x are nonfuzzy (known with
certainty); however, the dependent variable y is fuzzy (see
Heshmaty and Kandel 1985). For nonfuzzy y, e = 0.

Fig. 3 shows the membership function of the predicted value
of y. The value of a selected grade of membership or threshold
h in the figure can be derived as follows:

1 —h_ly, — y¥l
1 - h) Ce X (4)
where y* is estimated at the central value of the fuzzy mem-
bership function. Solving for A

_')’1")’?"

h=1
2 Xy
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At h = 1, the estimated value of y exactly approximates, rel-
ative to the magnitude of the system uncertainty (which is
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minimized by the fuzzy regression procedure), the actual value
of y. As ¢ becomes very small, 2 approaches zero, and the
estimated value of y does not estimate the actual value of y
well. In this respect, h can be used as one indicator of the
goodness of fit. The aspect is addressed in a later section.

Based on this derivation of A, the selection of 2 can be
interpreted as follows. For a selected grade of membership A,
or higher, the estimation of y is considered to be a good out-
come. When h = 0, there is a zero degree of belief that the
estimation of y is a good estimation of the actual value of y.
When h = 1, we have a high degree of belief of our estimation
of y. If h is selected as, say, 0.7, then the degree of belief that
¥*, in the form of a fuzzy number with a triangular member-
ship function, is a good estimate of y is at least 0.7.

Fuzzy regression has been used in a variety of applications,
predominantly where the sample size of the data set was too
small for a statistical regression. Shiraishi et al. (1988) devel-
oped a model for estimating the fatigue life of bridge structures
using a limited set of data based on the results of a fuzzy
regression analysis. Bardossy et al. (1990) used fuzzy regres-
sion to develop a relationship between soil resistivity (ohm-
meters) and the permeability of the soil (cm/s 10~°). Bardossy
et al. also described other potential uses of fuzzy regression
in hydrology. Kaneyoshi et al. (1990) developed a system
identification method applied to the construction of a cable-
stayed bridge. They used fuzzy regression as a way to include
measurement error for field data.

LABORATORY-BASED EQUATION FOR PIER SCOUR

Laboratory data from Chiew (1984), ‘‘Mechanics’’ (1966),
Jain and Fischer (1979), Shen et al. (1969), and Chabert and
Engeldinger (1956) were used to develop a traditional regres-
sion equation for pier scour for the purpose of comparing the
results to a fuzzy regression equation based on limited field
data to quantify the modeling uncertainty. The data consist of
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TABLE 1. Field Scour Data (Froehlich 1988)
Pier width Flow depth Sediment Scour depth
{m) (m) gradation (m)
) (2 3 (4)
4.5 18.8 2.2 43
4.5 174 2.2 3
8.2 4.9 11.5 37
8.2 4.3 11.5 4.3
1.5 1.3 53 0.4
1.5 1 53 0.4
1.5 0.9 53 0.5
1.5 0.9 53 0.4
1.5 0.7 53 0.4
39 3.5 23 28
16.3 4.1 8.3 7.3
224 34 83 6.8
252 5.4 8.3 8.5
14.2 16.3 18.7 79
12.7 11.6 18.7 4
14.2 13.4 18.7 7.6
9.4 19.5 6.1 6.1
28.7 11.3 6.3 10.4
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FIG. 5. Observed and Predicted Scour Depths Based on Eq.
(4]

flow depth y, pier width b, and scour depth D with average
values of 0.16 m, 0.11 m, and 0.13 m, respectively, and stan-
dard deviations of 0.09 m, 0.09 m, and 0.13 m, respectively.
All piers were cylindrical, the bed material was uniform sed-
iment, the flow was subcritical, and the flow velocity was
greater than the critical velocity for sediment movement (i.e.,
live-bed conditions). The ratio of b/ds, (where ds;, = median
sediment size) for all data was greater than 60 to avoid prob-
lems associated with a large sediment size relative to the pier
size (Chiew 1984). The data were arranged in dimensionless
ratios, according to convention, to avoid problems with sys-
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tems of units and to incorporate scaling into the equation. A
power regression of the 54 data points resulted in the follow-

ing equation:
0.667

D_10s (9) ©

y y
Velocity was not included in (6), since the data represent only
live-bed conditions and scour is not dependent on velocity
under these conditions (Melville and Sutherland 1988). Fig. 4
shows the predicted and observed scour depths. The statistics
for (6) are the correlation coefficient R = 0.94 and the ratio of
the standard error to standard deviation Se/S, = 0.19.

Field data from Davoren (1985) are used to demonstrate the
resuits of (6). In this example, » = 1.5 m, y = 1.3 m, and the
measured scour depth = 0.9 m. Eq. (6) resulted in an estimated
scour depth of 1.52 m. One reason for this overprediction may
be that the channel bed sediment at this bridge is not uniform,
as in the laboratory experiments. The geometric standard de-
viation for this case is 5.3, which may result in a reduced scour
depth.

FUZZY REGRESSION OF PIER SCOUR

Fuzzy regression was used to develop an equation with field
data compiled by Froehlich (1988). The data set is provided
in Table 1. The data represent live-bed scour and only those
data that were representative of conditions similar to-those of
the laboratory experiments (e.g., round-nosed piers, subcritical
flow) were used to develop the equation. The sample size of
18 included the flow depth, pier width, sediment geometric
standard deviation, pier length, angle of streamflow attack, and
scour depth. Pier width, pier length, and angle of attack were
combined to form a single parameter known as the effective
pier width, according to Froehlich (1988). The width of the
fuzzy observed scour depth was taken as 50% of the actual
measured scour depth; this value was chosen because there is
considerable fuzziness due to the inability to accurately mea-
sure scour during a flood. Using & = 0.5, fuzzy regression of
the field data resulted in the following equation:

D* = 0.64 + [0, 0.98)p' + [0.03, 0.12]y — 0.15G (V)

where G = sediment gradation; b’ = effective pier width (m)
= b cos(a) + L sin(a); o = angle of streamflow attack (deg),
and L = pier length (m). Ratios were not used here since scal-
ing is unnecessary for prototype equations. Eq. (7) provides
an interval for the fuzzy predicted scour depth. Fig. 5 shows
the results of the fuzzy regression in terms of observed and
predicted scour depths. The observed value lies between the
upper and lower values of the fuzzy predicted scour depth, as
required by (3). The linear form of (7) permits the possibility
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of negative scour depths. This is not physically possible; there-
fore, in Fig. 5, all negative scour depths were truncated at zero.
A scour depth of zero implies that it is possible that no scour
will occur at 2 = 0.5. The implications of having zero in the
range of possible scour depths are discussed in a later section.

Field data from Davoren (1985) were again used to test (7).
The scour depth for this example was 0.9 m, with b = 1.5 m,
y = 1.3 m, and G = 5.3. Eq. (7) provides a range of scour
depths from O to 1.49 m. The observed depth falls within this
range. The central value of D, which is associated with a mem-
bership value of 1 (i.e., the highest degree of belief) is 0.75
m, which is somewhat less than the observed scour depth of
0.9 m. The scour depth of 1.52 m estimated from (6) falls
outside of the fuzzy range.

The goodness of fit of (7) can be examined by computing
the membership level p or degree of belief for the 18 data
used in calibration and replacing & with p. Fig. 6 shows the
values of . plotted against the observed scour depths. All
are greater than the specified threshold level & of 0.5, as re-
quired by (3), with an average of 0.77. More than 72% of the
values of . are greater than 0.70, which shows that the data
fit the central point of the fuzzy intervals reasonably well.

Additional data not used in the calibration of (7) were used
to calculate . as a way of testing the predictive ability of (7).
Fig. 7 shows that . ranges from 0.45 to 0.98. All values fall
close to or above the threshold level of 0.5 with an average
of 0.75, again demonstrating a reasonably good predictive
ability.

Sensitivity of D* to Choice of h

Eq. (7) yields a fuzzy number D*. The coefficients in (7),
and thus the spread of the interval containing D* depend on
the choice of h. If & is, say, 0.6 or 0.7, the coefficients will
change. As h is decreased, the interval of each coefficient de-
creases, and, therefore, the interval of D* decreases. To deter-
mine the sensitivity of D* to the choice of h, (7) was recali-
brated using 2 = 0.7. The values of h were chosen according
to findings by Bardossy et al. (1990). Fuzzy regression of the
same data set using the & = 0.7 resulted in the following
equation:

D* =0.70 + [-0.45, 1.46]b' + [—0.04, 0.18]y — 0.16G (8)

Eq. (8) yields a larger interval for D* than (7). This is the
expected result since as h increases, the spread of the interval
must increase, according to (5). Using the example field data
from Davoren (1985) applied in the previous sections yields
D* = [—0.82, 2.28] m, a wider interval than obtained from
(7). The negative values of D* are not physically possible and
result from the linear form of the equation. Truncating the
negative values yields D* = [0, 2.28] m. This interval is ap-
proximately a 150% increase over using & = 0.5. Fig. 8 shows
a comparison of scour depths estimated from (6)—(8). The
membership functions of scour depths resulting from (7) and
(8) are assumed to be triangular, with the highest degree of
belief, or membership w, occurring at the central point of the
interval.

Assessment of Fuzzy Regression Models

A direct comparison of the fuzzy regression models with
statistical regression models has been avoided for several rea-
sons. First, pier scour literature abounds with examples of sta-
tistical regression of laboratory data. It need not be repeated
here. Second, comparisons and differences may be found else-
where [see, for example, Heshmaty and Kandel (1985)].

Fuzzy regression of crisp data results in a regression-type
model containing fuzzy regression coefficients and producing
fuzzy output. This is a very desirable attribute for most small-
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scale laboratory experiments where extrapolation to the field
is uncertain. For example, in developing an equation for pier
scour, the laboratory data from which the equation is devel-
oped are crisp, but the output from field-based input data con-
tains a great deal of uncertainty. A fuzzy regression model is
also desirable when the sample size is insufficient to reliably
perform traditional regression, as in the case of the field data.
However, there are a number of drawbacks to this method.

First, a level of acceptance h must be specified. The choice
of h is somewhat arbitrary. A sensitivity analysis could be
performed to determine the effect of various choices of k on
the resulting prediction equations, but typically there is little
basis for selecting a value. This problem is similar to the prob-
lem of choosing a level of significance in traditional statistical
tests. Brubaker and McCuen (1990) showed that an arbitrarily
assumed level of significance can lead to an incorrect model
under certain conditions.

Second, the objective function is the minimization of the
sum of the widths of the fuzzy regression parameters {min
2cy). This objective function can result in unrealistic engi-
neering predictions. An objective function should meet the fol-
lowing requirements in order to produce realistic engineering
predictions: (1) the sum of the squares of the difference be-
tween the observed crisp points and the midpoints of the pre-
dicted fuzzy points should be minimized; (2) the sum of the
difference between the observed crisp points and the midpoints
of the predicted fuzzy points should be required to be zero (an
unbiased model); and (3) the average spread of the predicted
fuzzy points should be minimum, and can be assumed to be
either constant or variable. The writers are currently pursuing
these variations to the fuzzy regression model.

Third, the development of the set of constraints [(3)] is a
laborious task, particularly when the data set is large. For each
trial, where there is a modification of the set of independent
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variables or a different selection of 4, a new set of constraints
must be developed. Also, slack variables must be added if one
or more coefficients could be negative. A revised model should
depart from the approach of specifying numerous constraints
that are sample dependent.

Fourth, it is difficult to assess the fit of the fuzzy regression
equation. Goodness-of-fit parameters used in least squares re-
gression do not apply for the case of fuzzy regression. By
revising the model according to the second item, the sum of
the squares of errors can be used as a measure of the goodness
of fit. Heshmaty and Kandel (1985) suggested several criteria
for evaluating the goodness of fit. One was the percentage of
the relative deviations between the actual y and the computed
central value of y*, in this case D*, that is, [Zox; — y,l/y,. A
second criterion was the relative width of the fuzzy sets com-
pared to the actual y, that is, Zc;lx;1/y;,. The results for these
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criteria depend on the user’s choice of 4. Also, the user has
to specify unacceptable limits of these criteria. This is not
always an easy task when dealing with fuzzy problems. In
addition, these criteria do not consider the case of fuzzy y,.

One way to deal with some of these problems of objective
function and goodness of fit is to use two objective functions,
one that would minimize the sum of squares of errors and one
that would minimize the widths of the fuzzy coefficients. Savic
and Pedrycz (1991) suggested a two-step method. In the first
step a statistical linear regression is performed to obtain the
central values of the regression coefficients a,. In the second
step the linear programming procedure is followed as before
except that the values of o, are known. Thus, in (3), the con-
straints are a function of ¢; only. The first step satisfies the
least-squares objective function. The second step satisfies the
minimum sum-of-widths objective function. This process also
simplifies the development of the constraint equations. How-
ever, the process still does not enable an unbiased goodness-
of-fit measure for the interval width.

FUZZY BIAS FACTOR

Laboratory-based scour equations are typically developed as
envelope curves [see Jones (1984) for a comparison of these
equations] representing maximum scour depths. Eq. (6) was
developed as a best-fit curve for the purpose of comparison
with (7), which is based on limited field data. A comparison
of (6) and (7) provides insight into the bias between the lab-
oratory and field-based scour estimates. The bias may be com-
puted as the ratio of the field estimate to the laboratory esti-
mate. However, a simple division is not appropriate since the
scour depth estimates are fuzzy numbers. At a selected degree
of belief, a fuzzy number a ranging in value from a, to a, can
be divided by a fuzzy number b, at the same degree of belief,
ranging from b, to b, as follows (Kaufmann and Gupta 1985):

lana] _jaa
[bv, byl [b; b,] ®

In the case here, b = a crisp number, that is, the value does
not change for any degree of belief. Let b, = b, = scour depth
based on (6), and a, and a, represent the left and right sides
of the triangular membership functions for the field-based
scour estimates from (7), respectively, as shown in Fig. 8,
where a and b represent scour depth as a function of mem-
bership value. The bias can then be computed from (9). As an
example, let b= 1.5 m, y =3 m, and G = 2. Eq. (6) yields an
estimate of 2.0 m. Eq. (7) yields an estimate of [0.43, 2.17]
m. From (10), the fuzzy bias ranges from 0.2 to 1.1, meaning
that the actual field scour may be 0.2-1.1 times the estimate
obtained from (6). The fuzzy bias factor for this example is
shown in Fig. 9.
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TABLE 2. Summary of Fuzzy Blas Factors for p = 1, Pler
Diameter b = 1, 3, and 8 m, and Sediment Gradation G = 2, 5,
and 8

Sediment Sediment Sediment
Flow Gradation Gradation Gradation
depth G=2 G=5 G=8
y |b=1|b=3|b=8|b=1|b=3(b=8|b=1|b=3|b=8
(m) m m m m

m m m m m
M@ |&H|G 6|06 |06 |00
1 [086]086|1.02]045|066| 092|004 046|082
3 |069[064|073] 041050066012 (037|059
5 |066|058]064 042|046 | 058|018 | 035 | 052
8 |067[054]057]|046|045]052|026 (035|047

TABLE 3. Summary of Fuzzy Blas Factors for p = 0.7, Pler
Diameter b = 1, 3, and 8 m, and Sediment Gradation G = 2, 5,
and 8

Sediment Sediment Sediment
Gradation Gradation Gradation
Flow
depth G=2 G=5 G=8
y |b=1|b=3|b=8|b=1|b=3|b=8|b=1|b=3|b=8
(m) m m

m m m m m m m
M 1@| (@ [EG[6[@®]®6 O ]300

1 071 [ 0.65 | 0.74 | 0.30 | 0.45 | 0.64 | Q.00 | 0.25 | 0.54
1.01 | 1.06 | 1.30 | 0.60 | 0.86 | 1.20 | 0.19 | 0.67 | 1.10
0.57 | 049 | 0.53 | 0.28 [ 0.35 | 0.46 | 0.00 | 0.21 | 0.39
0.81 } 079 [ 093 | 0.53 [ 0.65 | 0.86 | 0.24 | 0.52 | 0.79
054 | 044 | 0.47 | 0.30 [ 0.33 | 0.41 | 0.06 | 0.21 | 0.35
078 | 0.71 | 0.81 | 0.54 | 0.60 | 0.75 | 0.30 | 0.48 | 0.69
055042 | 042|034 | 032|037 ]014 | 022 032
079 | 067 | 0.72 ] 0.58 [ 0.57 | 0.67 | 0.38 | 0.47 | 0.62

O 00 Lh th W) ) w

The fuzzy bias factor at a degree of belief of zero is not
likely to be of interest to an engineer. It is more likely that
the engineer will be concerned with the bias at a degree of
belief of 0.7 or more. In that case, the fuzzy bias factor for
the example above at a degree of belief of 0.7 is [0.52, 0.79]
based on a triangular membership function for the fuzzy field
scour equation [(7)] and (9). This fuzzy bias means that at a
degree of belief of 0.7, (6) overpredicts, so that the actual
amount of scour that can be expected in a field situation may
be between 0.5 and 0.8 times that predicted by (6). In other
words, for this example, the actual field scour may be at least
1.0 m and no more than 1.6 m.

Pier width has been shown to have a significant effect on
pier scour in laboratory studies [see, for example, Melville and
Sunderland (1988)]. The effect of pier width on the fuzzy bias
can be illustrated by computing the bias based on various
membership values for various pier widths. Fig. 10 shows the
fuzzy bias factor computed from (9) and corresponding mem-
bership values greater than 0.7 fory =3 m, G =2, and b =
1, 2, 3, 5, and 8 m. As the pier width increases, the range of
bias for membership values of 0.7—1.0 increases. For a larger
pier width (b = 8 m), the bias is strongly dependent on the
membership value.

Similar information can be derived for changes in flow
depth or sediment gradation and for membership values
greater than 0.7. Figs. 11 and 12 show the bias resulting from
changes in flow depth and sediment gradation, respectively.
Changes in flow depth produce a corresponding shift in the
central point of the fuzzy bias factor; however, the range of
the fuzzy bias interval does not change nearly as much as the
change in range for pier width variations. This is also true of
the fuzzy bias factors for various sediments gradations. The
shift in the central point for changes in sediment gradation,
however, is considerably greater than the shift in the central
point for changes in the flow depth.

It is also useful to examine the fuzzy bias for combinations
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and Membership Value

of values of the variables y, b, and G. Table 2 provides the
bias for a membership value of 1; this is the bias with the
greatest degree of belief. This shows a variability in the mean
bias (for u = 1, where p = membership value), with a range
from 0.04 for a small pier, low flow depth, and large sediment
gradation to 1.02 for a large pier, low flow, and low sediment
gradation. The fuzzy bias for a membership value of 0.7 is
presented in Table 3. Two values of bias are given, repre-
senting the upper and lower bias at . = 0.7. The bias at this
degree of belief ranges from zero to 1.30. A fuzzy bias of
zero implies that there is a possibility that no scour will occur
even though the laboratory-based scour equation predicts that
scour will occur. Fig. 13 shows these ranges in bias for se-
lected cases. Variables that were held constant for each case
had the following values: y =3 m, b = 1.5 m, and G = 2.
From Fig. 13(a) and Tables 2 and 3, it is clear that the bias
range becomes large for large values of b; however, there is
little change in the central value (at o = 1). For y and G
(Figs. 13b and c), the bias increases as the value of the var-
iable increases.
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CONCLUSIONS

Fuzzy linear regression was used to develop a bridge pier
scour model based on field data for the purpose of determining
modeling uncertainty in scour models based on laboratory
data. The fuzzy regression equations provide a range of scour
estimates for any given set of input data. Fuzzy regression is
advantageous where there is considerable uncertainty in the
mode] parameters. In the case presented in this paper, only
data for round-nosed piers, subcritical flow, and live-bed con-
ditions were used. The fuzzy regression equation developed
here accounts only for effective pier width, flow depth, and
sediment gradation.

The fuzzy bias associated with pier scour prediction devel-
oped here provides useful information in the application of
pier scour equations currently available to engineers. The bias
exists because of the use of small-scale laboratory results to
predict large-scale, real-world problems. The range of values
of the fuzzy bias factor represents uncertainty in the estimation
of bias due to uncertainties in estimating pier scour.

The results of this study can be used to guide experimenters
in their interpretation of small-scale laboratory test results. The
fuzzy bias can be incorporated into laboratory-based models
in the form of multiplicative correction factors to provide en-
gineers with a better (more realistic) estimate of the predicted
variable for field applications.

Engineers can use the fuzzy bias for adjusting scour esti-
mates. Using the example for 5= 1.5m, y=3m, and G = 2,
the fuzzy bias ranges from 0.52 to 0.79 for a degree of belief
of 0.7, with a bias of 0.66 at p. = 1. The engineer can base
decisions on the design scour depth or expected scour depth
using this range. On a very busy bridge, a high degree of belief
as well as a high level of reliability is desired; therefore, the
engineer would use the upper bias of 0.79. The scour depth
estimated from the laboratory-based equation developed in this
paper would then be multiplied by 0.79 to obtain the design
depth. In another case, for a seldom used rural bridge, a high
degree of belief would be combined with a lower reliability
requirement; therefore, the mean fuzzy bias of 0.66 would be
used.

The bias factors can also be used in developing reliability-
based design methods of bridge piers for scour (Ang and Tang
1984). The factors are an essential step towards quantifying
the reliability of real piers against scour. Once the reliability
levels corresponding to current design practices are assessed,
a calibration of the practices can be performed by developing
safety factors to achieve desired (target) reliability levels.

Although fuzzy regression is a useful tool for incorporating
uncertainty into model parameters, several points were raised
to caution the user of potential problems in the application of
fuzzy regression as a final prediction model. The writers are
currently investigating improvements to the technique. How-
ever, fuzzy regression has been an effective tool in determining
the differences between scour estimates based on laboratory
analyses and field observations. Additional field data could be
used to improve the model as that data become available.
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APPENDIX Il. NOTATION

The following symbols are used in this paper:

A* = fuzzy regression coefficient;

b = pier diameter;

¢ = width of fuzzy number;
ds, = mean sediment size;

D, = scour depth;

G = sediment gradation;

h = threshold level;

R = correlation coefficient;

Sp = standard deviation of observed scour depth;
Se = standard error of estimate;

y = flow depth;

o = central value of fuzzy regression coefficient; and
i = membership value,



