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Reliability-Based Design Format for Marine Structures

Gregory J. White' and Bilal M. Ayyub?

e ot

Recently there has been increased effort by classification societies and design authorities to bring reliability

analysis into the design process.

Typically these efforts involve using some reliability analysis method to

calculate “partial safety factors’” for design equations. The mean-value first-order second-moment method
(MVFOSM), the advanced second-moment method (ASM), and an “‘exact’’ method have been used, or are

being proposed for use. in the design of marine structures.

In some recent work it has been shown that de-

sign formats based on the first two methods may resuit in engineering designs of different reliability ievels
than the ones specified in developing the design formats. These three methods are evaluated and a
"“reliability-conditioned (RC) method'* is proposed in this paper. The proposed method overcomes the
shortcomings of the MVFOSM and ASM methods and extends the concepts of the “‘exact’”” method in a more

useful form to handle general types of problems.

The RC method is believed to result in partial safety

factors which give engineering designs of reliability levels equal to the specified ones.

Introduction

IN RECENT YEARS there has been a considerable effort invest-
ed to include reliability analvsis in engineering designs. Ty pi-
callv this effort has focused on bringing into the design codes
some statistical parameters to account for the various uncertain-
ties in the design process. These parameters usually take the
form of “safetv” or “partial safetv’ factors which account for
uncertainty without requiring the individual designer to per-
form a probabilistic analvsis. Thisisa very reasonable approach
and has been adopted by various organizations for proposed
revisions to their codes [1-6].3

The principal difficulty with this approach is in determining a
set of “partial safety” factors which will give the desired level of
reliabilitv.  The limitations here include not only the oftentimes
insufficient data on which to make statistical inferences. but also
the manuer in which the data are handied when available. The
most commonly used methods for determining the partial safetv
factors include the mean-value first-order second-moment meth-
od MVFOSM) and the advanced second-moment method

ASMD. Recently Mansour et al [ 7] extended the “exact method™
5-11] to calculate partial safetv factors. The present authors
12" and others [7] observed that the first two methods are unsat-
isfactory in manv cases. sometimes providing less reliability than
specitied.  While the approach of reference 7" gives accurate
results. it is somewhat limited in scope. These weaknesses will
be discussed in detail in the following sections.

The aim of this paper is to introduce a new approach. called
the “reliabilitv-conditioned (RC) methed.” which will more con-
sistently and accurately evaluate the required partial safety fac-
tors for a wide variety of limit states. This method will be used
to evaluate the longitudinal strength of a variety of ships and will
be compared with the MVFOSM, ASM. and “exact” methods.

Existing reliability-based design methods

The purpose of engineering design is to insure the safety or
performance of a given svstem for a given period of time and or
under a specified loading. The absolute safety of a svstem
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cannot be guaranteed due to the number of uncertainties in-
volved. [nstructural design these uncertainties can be due to the
simplified assumptions used in predicting the behavior of the
structure under loading. our inability to determine in-place ma-
terial properties accuratelv. randomness of loadings. ete. How-
ever. through probabilistic analysis we can limit the risk of
unacceptable consequences.

That is not to say that all engineers and designers need to be
deeply versed in probabilistic analysis. Rather the design crite-
ria which theyv use should be developed in a format which is
familiar to the users and which should produce desired levels of
uniformity in safetv among groups of structures without depart-
ing drastically from existing general practice.

One of the more popular formats for this tvpe of design
criterion is the load and resistance factor design (LRFD) as
propased for use by the American Petroleum Institute [1]. the
National Bureau of Standards [6]. and other arganizations [12}.
The farmat can be expressed as

¢RZZV,L, ()
i=1

where o 1s the resistance R reduction factor and 4 the partial
load effect L, amplification factor.

Each of the methods of reliability analvsis mentioned earlier
will be used to evaluate the partial safety factors in equation (1)
for ship longitudinal strength analvsis. This will allow a com-
parison of the effectiveness of each method for relizbilitv-based
design.  Before presenting the results of these apolications a
briet discussion ot each method and how it determines the partial
factorsis provided A detailed summary of the methads is given
in reference [T’

Mean-value first-order second-moment method

For a structural element there are usually severa! limit states
which constrain a design.  These limit states are assviated with
the different modes of structural behavior and muy be further
classified into ultimate limit states and serviceability limit states.
It is important that during the design process all appicable limit
states be addressed  [n general. these limit states or performance
functions can be expressed as

M=g\ X, \,) 2

where X, are load and strength parameters considered as random
variables
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The X{’s are calied basic random variables and the limit state
function g{(.) relates these variables for the limit state of interest.
Failure according to the limit state occurs when M < 0.

The approximate mean and variance of M in equation (2) can
be estimated by expanding g{.) in a Taylor series about the mean
values of X;'s and truncating the series at the linear terms (13-16)
(thus mean value and first order). A measure of the safety is
usually estimated in terms of a “safety index” 8* from the

———knowledge of the mean and variance of M

B*=un/om @)

If the distribution of M is known, then the probability of failure
Py can be found from the density function of M, Fy(m). Usually
the distribution of M is not known and an estimation of Py is
made by assuming M to be normally distributed, such that

P,;l—@(’;—"') (4)

where @ is the cumulative distribution function of the standard
normal.

For the design format of equation (1), the limit state equation
can be written as

M=R—L,—L,—...~Ly (5)

To evaluate the partial safety factors ¢ and v,, the statistics for
the loads, that is, mean values and variances, the coefficient of
variation of the resistance, and a specified level of risk in terms of
B* are needed. Using equations (3) and (5), and the Taylor series
expansions for g(.), the mean value of the resistance can be
shown to be {13,14]

R=(L,+L,+...+Ly
+8% o+ (oot + o B2 (6)
making use of the approximation that
(df + 171.2)1/2 =075 (o, + 0',)
equation (6) can be rewTitten as
(1-0758* Q)R = (L, + Ly +... + L)
+0758% (o 2+ o P+ ..+ o BV (T)

where g is the coefficient of variation of the resistance.
Equation (7) can also be expressed as

SR=vy L +v,L,+. ... +v,Ly (8)
where
¢=1-0756*Q, )
v =14+0758*%« Q, (10)
(o240, 24 ...+, HI/2
=D = (11)

a,_l+6,_’+...+al_'\

There are three basic shortcomings with the MVFOSM

method:

e If g(.) is nonlinear and the linearization takes place at the
mean values of the basic random variables, it is possible for
the linearization point not to lie on the failure surface.

¢ The method fails to be invariant for different equivalent
formulations of the same problem {7,12].

o Equation (4) is valid only when the basic random variables
are normally distributed and the function g(.) is linear in
Xi'sor when g( .} is the product of log normally distributed
basic random variables.

Advanced second-moment method

In order to overcome the aforementioned shortcomings of the
MVFOSM method, the ASM method was proposed [17-19), in
which the Taylor series expansion of g(.) is linearized at some
point on the failure surface rather at the mean values, say point
(X15,Xgs,. . . Xpe). The linearizing point is called the design
point or the failure point. The selection procedure for the
design point can be explained as follows. With the limit state
and its variables as given by equation (2), the random variables’
X’s are first transformed to reduced uncorrelated variables with
zero mean and unit variance. If the original basic variables’ X's
are uncorrelated, the transformation is given by

Y, = u (12)
13 X,
If X's are correlated, they must be transformed to uncorrelated
random variables. The procedures are quite involved and are
beyond the scope of this paper [18)}.

The safety index B, according to the advanced second-moment
method, is defined as the shortest distance to the failure surface
from the origin in the reduced Y-coordinate system [17,18]. It
has been further shown that the point on the failure surface at the
minimum distance from the origin in the reduced coordinate
system is the “most probable failure point.” Inthe ASM method
an iterative solution can be performed until converging on a
minimum value of 8 by appropriately choosing the design point
on the failure surface and performing a *first-order analysis.”

The safety index 8 can be calculated in both the reduced
coordinate system (Y-coordinate) or in the original coordinate
systemn (X-coordinate). Using the original coordinate system,
the failure point (X;«,Xge,. .., Xpne) and the safety index § are
determined by solving iteratively the following system of equa-
tions [15,17,18):

(3g/3X,) oy,
= = 7 (13)
D (8e/dX ) 7,
=1
Xp=X —q Boy. (14)
g(Xyo X o . . X,0) = 0 (15)

where the derivatives dg/dX; are evaluated at (X;+,Xgs,. . ..Xms),

Nomenclature

M = measure of structural performance
(margin of safetv!
HmOm = mean value and standard deviation of
M
&,7¢ = resistance and load partial safety fac-
tors
X, = basic random variable of load or
strength
B* = safety index using MVFOSM method
B = safety index using ASM method
Py = probability of failure

MARCH 1987

F.J: = cumulative distribution function
(CDF) and probability density func-
tion (PDF) of variable x

¢ = cumulative distribution function of the

standard normal variate

R.L, = resistance and load variables

R.,.L = mean values of resistance and load vari-
ables

Qr. 0y, = coefficient of variation of a random
variable R and L,

a, = directional cosine of random variable r
X, = value of variable x, on failure surface
Y, = reduced uncorrelated variables with

zero mean and unit standard devi-
ation

my = value of deterministic stillwater bend-
ing moment
A = mean value of wave bending moment
(long-term analysis) .
L1 = length of the waterline, ft
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Fig. 1 Most likely failure point for two random variables

and a; is the directional cosine of random variable X;. The
relationship between the probability of failure, Py, and B is the
same as given by equation (4). For applications of this method,
see references [12,15,18-20}.

In many structural engineering problems, the design variables
are non-normal. According to Rackwitz and Fiessler [21] non-
normal probability distributions may be incorporated in the
aforementioned reliability analysis by transforming the non-
normal variables into equivalent normal variables on the failure
surface. An equivalent normal distribution is one where the
cumulative distribution function (CDF) and the probability den-
sity function (PDF) are the same for both the actual and equiva-
lent normal distributions at the failure point. This requires that
a new equivalent normal distribution be calculated at each itera-
tion. This approximation of non-normal distributions becomes
more and more inaccurate if the original distributions are in-
creasingly skewed.

For design problems then, given the probability distributions
and statistics of the load effects, the distribution and coefficient
of variation of the resistance, a linear limit state equation [equa-
tion (5)], and a specified safety index, the mean value of the
resistance and the partial safety factors ¢ and v,’s can be shown to
be [18]

o=1=—- a; B8y (16)
v, =1~a; BY (17)
R =R*/¢ (18)

where Q is the coefficient of variation of the random variable and
«; is the direction cosine {equation (13)] evaluated at the most
hkel\ failure point in the reduced coordinates.

At the failure point (R*.L;,. . .,L}) then, the limit state equa-
tion is given by

M=R*—L* —L*%—.. . —L* =0 (19)
It should be noted, however, that the method can be used for

both linear and non-linear limit state equations [18.19].
The main shortcoming of the ASM method is that the iterative

numerical solution of equations (13) to (15) may not converge to.

a correct 8. especially for cases where the limit state equation has
many variables, and ‘or some non-normal random variables are
highly skewed (15].

Additionallv, recent work by the authors [12] has shown that it
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is possible for both the MVFOSM and ASM methods to find
partial safety factors which when used in a design equation
produce designs of a reliability level other than that originally
specified. This was increasingly noticed in cases involving high-
ly non-normal load distributions and seems to be a result of the
manner in which the partial safety factors depend on «; in
equations (16) and (17). It canbe shown [12] that the directional
cosines a; to which the ASM method convenges in equations (13)
to (15) are not unique. That is, there exists for any point on the
failure surface a set of directional cosines «; which could also
satisfy those equations. Thus, a solution for partial safety factors
which involves the directional cosines {equations (16) and (17)}
may be inconsistent and somewhat arbitrary.

The “exact” Level IIT method

This method has been used to determine the probability of
failure for oceangoing vessels [7,9,11]. The method simplifies
the exact multiple integration required to evaluate the probabili-
ty of failure in order to get an approximate closed-form solution
(8]. A linear limit state equation is given by

M=gX,X,)=gRL)= (20)

where R is the strength or resistance and L is the load, made up of
a stillwater component and a wave component.

With the strength normally distributed, the wave component
exponentially distributed, and a deterministic stillwater compo-
nent, the probability of failure can be closely approximated by

{8]):
[1 _qp(m_-"*_o)]w(f_'_:ﬂ_&)
a, g, A

X exp [—(u, — mg)/N + o2/2)\°] (21)

=4

Py

where

¢ = CDF of standard normal variate
p, = mean value of strength
o, = standard deviation of strength

mg = deterministic stillwater component
A\ = mean value of wave component

The derivation of this equation and a similar one for the case of
normally distributed stillwater loads is given in detail in refer-
ence {9].

This method was extended to determine partial safetv factors
in reference {7]. The key for extending the method is that for
the limit state as given in equation (20) with the load and strength
considered statistically independent, the joint probability density
function is given by

fop (r.8y = fg(r) - f1(€)

Then the most probable failure point is that point on the
failure surface where r = £ and

frir = f (&)

This is shown in Fig. 1. One can then simply solve for the
point x* = R* = L* by equating the PDF of the load and
strength. Once the coordinates of the failure point (R®*.L*) are
known, then equation (18) can be used to find ¢ and A\;. Note
that the values for R* will be less than R, so ¢ will be less than one:
and values of L* will be greater than L, so v, will be greater than
one.

The weakness with this approach is that it is limited to cases
where the limit stz:e equation can be expressed in terms of two
variables. that is, eguation (20!. It does, however, point the wayv
to a more general salution and has been shown to provide partial
safety factors which give levels of safety equal to those specified.

(@2

(23
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Reliability-conditioned partial safety factors

In order to develop a more widely applicable and consistent
method to accurately determine the required partial safety fac-
tors, a slightly different approach to the problem is taken. First
of all, the method would be most likely used by design authorities
or classification societies to generate partial safety factors for
design codes; thus a simple design code format like that given by
equation (1) would be the limit state.

____-For cases where a new limit state is being evaluated or an

existing code doesn't give adequate safety, the design authorities
would be looking for a level of resistance or strength which would
provide the necessary level of safety. They would also want to
generate the partial safety factors which, when given the loads
and their statistics, would be able to arrive at that value of
resistance. In this case there are two steps to the problem: first,
finding a mean value of R, given the statistics of the loads, the
«oefficient of variation and distribution of R, and the required
level of safety in terms of 8 or Ps; and second, after finding R,
determining the most likely failure point and then the partial
safety factors.

For cases where the existing code provides a level of strength
deemed adequate and all that is desired is to change to an LRFD
format, the first of the two aforementioned steps would be
skipped. This is called code calibration.

To solve the problem of finding a mean value of R for the
desired level of safety. the authors recommend using simulation
with variance reduction techniques (VRT's). This method is
discussed by the authors in references [15] and [20]. The mean
value of R can be found using an appropriate iterative scheme
and the simulation with VRT’s.

To find the most likely failure point when the limit state
equation contains only two random variables, equation (23) must
be solved. To do this, first choose a value of R* which is less than
R. Then solve the limit state equation for L*, insuring that R*
and L* are on the failure surface

R*—L*=0 (24)
Evaluate if equation (23) is true, that is
? E
fr(R*) = f (L% (25)

If not, pick a new value of R* and repeat. Once equation (25) is
within acceptable limits of being true, then load and resistance
factors are found from

x* *
= RT; A= L—_

R L
This is essentially a generalization of the “exact” method for
distributions other than those specified in equation (21).

When the limit state equation has more than two random
variables, that s, (R,L,.L... . L), then some additional steps are
required. The most likely failure point is still defined as in
equations (24) and (25). but now looks like

FRB*) = f Ly Ly (Lo Lye,. . Ly = 0) @n

where the second term is the joint probability density function of
the loads evaluated at the failure point. This is shown graphical-
lv in Fig. 2.

For statistically independent loads equation (27) becomes

fa(R*) —le(I—L') 'sz(Lr) M 'fLN(LN-) =0 (28)

The values of the basic variables are still required to be on the
failure surface, that is

R*~L.—L, —

o] (26)

e L‘\‘o = 0 (29)

and to further bound the possible combinations of values which
satisfy equations (28) and (29), a percentile requirement on the
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f (R)=¢ .
R( ) LI'LZ t2
0

(e,Lh

Fig. 2 RC most likely failure point for three random variables

loads is specified. That is, the likelihood of exceeding the failure
value of any load effect L, is the same as the likelihood of
exceeding the failure value of any other load effect. This is
given by

Fi(Le)=Fp (L4 =0, i=1N-1 (30)

This set of equations (28,29,30) must be solved simultaneously
for the most likely failure point. A proposed solution scheme
takes advantage of the form of the equations and is given as
follows: _ _

1. Choose a value of R* <R. A valueof R —(2- og) hasbeen
found to be a good starting point.

2. Solve equations (29) and (30) using an iterative Newton’s
method for nonlinear simultaneous equations. For the case of
linear limit state equations and multiple loads, this method is
shown, in matrix form, to be

[ M M M T
oL, dLy_, dLy
fuL*amy) - 0 ~f (L* N p)

— 0 T fL,-_,(L'N-I..k—l) _fL,\.(L'N,k-l) _J

(AL [2RT 4 (Lo + Loy oo+ Lo
ALz,k—l) _FLI (L'l_k-l) + FLN (L..\"k—l)
X =
L ALy -y “Fp Lok F EL (L)) _
(31)

where L* is the failure value for the ith load in the kth iteration,
and AL;; is the incremental change in the failure value. Then
the most likely failure point for the Kth iteration is given by
L.Uc = L.Lk—l + ALi.k—l' i= l, P N (32)
The initial estimate of the values for the failure point for the k =

1 iteration should be positive and larger than the mean values of
the loads.
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3. Check the values from equation (32) to see if they satisty
equation (28). If not, modify R* accordingly and go back to
Step 2.

4 Find the partial safety factors using equation (26).

The RC method is shown here for a linear limit state equation
of the form of equation (5). Thisform of limit state was chosen
for an example because the RC method is intended for use by
design authorities for the generation of partial safety factors for
LRFD format design equations. However, as long as the limit
state equation can be expressed as “resistance” minus “load,”
where the loads can be assumed to be statistically independent,
nonlinear load relationships can be handled by the RC algorithm.
A flow chart illustrating the ease of computer implementation of
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this approach is shown in Fig. 3.

Further examples and discus-
sion of this method is provided by

the authors in reference {12].

Comparison of methods by examples
Two-variable limit state

In order to best explain the merits and shortcomings of each
method. two sets of example problems were investigat The
first set, presented by Mansour [7), calculates the partial safety
factors for the longitudinal strength of 18 oceangoing vessels.
They are the same vessels as used in several earlier works [9-11}.
The limit state equation is of the form

JOURNAL OF SHIP RESEARCH



Table 1 Principal particulars of 18 sample ships (7]
Ship L8P, 8, d, dwt
No. ft ft ft Cy (approx.)
1 1076.00 174.87 I 81.40 0.86 326 600
2 1069.25 163.25 58.05 0.83 206 100
3 1000.00 154.76 60.45 0.83 190 800
e e 4 763.00 115.99 42.01 0.77 67 900
5 754.70 104.46 44.40 0.82 66 500
6 754.70 105.65 44,74 0.809 63 300
7 754.69 105.65 44.74 0.804 62 000
8 693.75 97.00 39.17 0.775 46 650
9 719.10 82.50 39.15 0.786 40 970
10 620.81 85.96 35.72 0.784 31 500
11 594.00 74.00 33.48 0.800 26 580
12 775.00 105.50 47.00 0.831 75 500
13 700.65 98.43 40.70 0.774 45 100
14 528.50 75.99 29.88 0.615 13 400
15 520.00 75.00 31.42 0.573 12 750
16 528.00 76.00 29.80 0.609 13 400
17 800.00 106.00 44,55 0.840 74 200
18 656.20 93.80 42.63 0.793 48 550
M=R-L

where

R = ship longitudinal strength, ft-tons
L = load, ft-tons, made up of a deterministic stillwater compo-

nent and an exponential wave component
=L+ L.

Because of the deterministic stillwater component, the distribu-
tion of L can be considered to be a shifted exponential distribu-
tion for the purpose of calculating the PDF and CDF as follows:

A itemou

L= 12m,
™
=0 1<m, (33)
and
FL()=1—¢"""™% | >m,
=0 1 <m, (34)

where my is the value of the stillwater bending moment in foot-
tons and u. is the mean value of the wave bending moment.

In reference (7] the MVFOSM, ASM, and the “exact’ methods
were used to find the partial safety factors for the 18 ships whose
characteristics are given in Table 1. The results are given in
Table 2 along with the results of using the RC method. It should
be noted that the v, values are multiplied by the sum of the mean
value of the wave up and the stiliwater component my. It is
obvious from Table 2 that the MVFOSM and ASM methods give
partial safety factors that are unreasonabiy low and not consis-
tent. The “exact” and RC methods give the same values. This
is due to the fact that the MVFOSM and ASM methods do not
converge on the correct “most likely” failure point. In the case

MARCH 1987

Table 2 Partial safety factors using each method—18 ships

Advanced
Second Moment "txact* [7] Reliability
MFOSM 7] (7] Conditioned
Shig

No s 1y [ Yz [ 23 Yz L3 Y2
1 1 0.348 1.086 |0.370 1.135 10.533 1.663 | 0.533 1.663
2 10.230 1.234 }0.287 1.391 |0.478 2.565 | 0.478 2.566
3 {0.208 1.352 {0.289 1.596 | 0.474 3,087 | 0.47¢ 3.087
4 {0.407 1.099 |0.441 1.156 [ 0.581 1.568 | 0.581 1.568
5 10.3¢9 1.075 | 0.366 1.116 |0.529 1.630 | 0.529 1.630
6 |0.326 1.067 |0.339 1.103 | 0.507 1.659 | 0.507 1.659
7 10.330 1.067 |0.343 1.103 |0.510 1.648 | 0.510 1.648
8 | 0.385 1.105 [0.420 1.166 | 0.567 1.626 | 0.567 1.625
9 }0.3¢2 1.117 (0.378 1.189 [0.539 1.762 | 0.539 1.762
10 §0.386 1.119 |0.427 1.190 | 0.570 1.654 | 0.570 1.654
11 ]0.349 1.219 }0.438 1.354 10.563 1.941 |0.563 1.941
12 10.326 1.065 | 0.347 1.099 |0.512 1.627 |0.512 1.624
13 {o0.304 1.154 |0.350 1.252 |0.519 1.973 | 0.519 1.973
14 | 0.44¢ 1.153 1 0.510 1.243 | 0.615 1.598 } 0.615 1.598
15 }10.432 1.071 [0.452 1.109 |0.590 1.461 | 0.590 1.462
16 ) 0.596 1.182 [0.682 1.263 [0.705 1.399 {0.705 1.398
17 {0.200 1.394 10.287 1.671 |0.472 3.290 | 0.472 3.292
18 §0.294 1.184 |0.350 1.302 |0.518 2.084 | 0.518 2.084

of the MVFOSM method this is due to the assumption that all
variables are normally distributed. In the ASM method, the
approximation of the equivalent normal distribution does not
adequately account for the shape of the shifted exponential
distribution.

The partial safety factors for the “exact” and RC methods are
the same because both approaches require the most likely failure
point to satisfy equations (23) or (25). For this type of problem
these two methods are just different schemes for solving the same
equations. The advantage of the RC method is its ability to be
applied in a much wider variety of cases and its ease of computer
implementation.

Partial safety factors for code calibration

In order to demonstrate the use of these methods for code
calibration and to point out some of their differences, a second set
of examples is investigated. Again, this set is from Mansour [7].
The American Bureau of Shipping’s (ABS) 1982 Rules for Build-
ing and Classing Steel Vessels were used to find the minimum
hull strengths and loadings required for the longitudinal strength
of ten Series 60 ships, with Cg = 0.70 and L/B = 7.0. Several
assumptions were made regarding the distributions and coeffi-
cients of variation of the strength and loads as well as the excee-
dance level of the wave loads implied in the rules. The mean
values and coefficients of variation of the parameters used for the
following calculations are given in Table 3. A detailed explana-
tion of how these values were found is given in reference {7].

The goal in this example is to determine partial safety factors
for an LRFD format implementation of the ABS rules for longi-
tudinal strength using the four methods. These factors should
then provide the required mean value of strength for the safety
level desired when the loads are given.
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Table 3 Load and strength parameters for Serles 60 ships, using

ABS rules
Ship Mean Mean Mean
Length Still Water Wave BM Strength
(ft-tons) {ft-tons) (ft-tons)
300 2.3164E+04 7.7494£+03 8.6403E+04
400 5.8329€+04 2.0212€+04 2.1943E+05
500 1.2053€+05 4.3088E+04 4,5642E+05
600 2.2137€405 8.1002E+04 8.4017€E+05
700 3.7226€+05 1.3902E£+05 1.4140E+406
800 5.9405€+05 2.1885E+05 2.2145E+06
900 8.7463E+05 3.2171€+05 3.2424E+06
1000 1.2240€+406 4.4794E+05 4.5031E+06
1100 1.6513€+06 5.9620€+05 6.0001E+06
1200 2.1630€+06 7.7404€+05 7.7815¢+06
NoOTE: All values calculated following procedure

in reference (7).

Table 5 Partial satety factors using RC method

Reliabilrty-Conditioned
Length i

Ship  ft [N Yow Yw
i 300 0.5297 1.127 2.537
2 400 0.5158 1.119 2.371
3 500 0.5052 1.112 2.241
4 600 0.4963 1.107 2.122
5 700 0.4889 1.102 2.023
6 800 0.4833 1.095 1.916
7 900 0.4779 1.091 1.849
8 1000 0.4734 1.088 1.787
9 1100 0.4697 1.084 1.724
10 1200 0.4663 1.080 1.668

Table 4 Partial safety factors using MVFOSM and ASM methods

Mean-value First-Order Second Moment : Advanced Second Moment {7)
:
Length ]
Ship ft [N Yew Yo ] o Yow Yy 8
1 300 0.6554 1.076 4.091 4,705 : 0.8605 1.031 6.515 3.420
2 400 0.5775 1.165 1.691 4.650 : 0.8662 1.029 6.434 3.364
3 500 0.6709 1.072 4.107 4,595 : 0.8710 1.028 6.348 3.311
4 600 0.6777 1.070 4,106 4.542 : 0.8750 1.027 6.261 3.265
5 700 0.6844 1.069 4.102 4,489 : 0.8780 1.027 6.185 3.227
6 800 0.6889 1.069 4.073 4.439 : 0.8783 1.027 6.117 3.1¢3
7 900 0.6913 1.069 4.062 4.414 : 0.8807 1.027 6.085 3.17%
8 1000 0.6935 1.069 4.050 4.390 : 0.2808 1.027 6.046 3.17
9 1100 0.6950 1.070 4,031 4,367 : 0.3809 1.027 6.018 3.1:
10 1200 0.6967 1.070 4.016 4.346 E 0.8812 1.027 5.988 3,143

* A1} calculations assumed still water moment COV = .091, strength COV = 0.1, and Wave

cov = 1.0

The LRFD format chosen is the same as in equation (1), which
for this case is

®R 2 v, L., +7v.L. (35)

For this analysis the stillwater load effect is considered a
normally distributed random variable with a coefficient of varia-
tion of 0.091 and therefore must be accounted for explicitly.
The strength is considered to be normally distributed with a
coefficient of variation of 0.10 and the wave loads are exponen-
tially distributed (a Weibull distribution withk = 1 and A = u,;a
long-term analysis [9)).

The partial safety factors for the MVFOSM and the ASM
method are given in Table 4. Note that the MVFOSM and ASM
methods use different target safety indices for each ship. In
both of these methods the ABS rule values for loads and strength

are first evaluated to determine the prescribed level of safety,

measured by the safety index. This safety index is then used to
find partial safety factors which, when the loads are given, allow
the designer to find a value of resistance which gives the pre-
scribed level of safety. Both methods are dependent on having a
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B-value, which in turn requires the assumption that all random
variables are normally distributed when determining the proba-
bility of failure. The safety indices may also give a false sense of
the level of safety implied by use of the partial safetv factors.
Clearly, there is a significant difference between the safety indi-
ces using each approach. The question is. which is the correct
one? Recent work {7,12,20] has shown that in manv cases nei-
ther is correct, and in fact they both err on the nonconservative
side.

The “exact” method cannot be used to evaluate the partial
safety factors for formats such as equation (35) because the
method does not account for the loads separately. This is due to
the fact that there are a number of solutions to equation (27)
[which is the multidimensional equivalent of equation 23)} and
the method provides no means to determine one among them.
Therefore. the “exact” method as it currently exists would not be
suitable.

The partial safety factors as determined by the RC method are
given in Table 5. It is interesting to compare the results of the
RC method approach with that of the ASM. [t is obvious that
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Table 6 PDF's tor variables at the failure points for Series 60 ships, using ABS rules for finding mean values
Reliability-Conditioned Method Advanced Second Moment Metnod
Length Still Product Still Product
Ship ft Water Wave (1*2) Strength Water Wave {1*2) Strength
(1) (2} (1) (1)

1 30C 7.134£-05| 1.020E-05] 7.279€-10| = 7.283E-10 1.786£-04 | 1.911€-07 | 3.413e-11| < 1.745£-05
2 400 3.212€-05| 4.620£-06| 1.4BAE-10| = 1.477£-10 7.1446-05| 7.900E-08 1 S5.644€-12| < 7.429£-06
B 3 500 1.705€-05| 2.468E-06| 4.207E-11| = 4.218E-11 3.470€-05 | 4.060E-08{ 1.409E-12} < 3.804E-06
4 600 9.917€¢-06 | 1.479E-06| 1.467€-11] = 1.468E-11 1.895¢-05{ 2.360£-08] 4.472E-13] < 2.174€-06
- 700 | 6.318£-06| 9.512€-07| 6.010€-12| = 6.014€-12 1.1276-05| 1.480£-08] 1.668E-13| < 1.340€-06
6 800 4.260E-06 ( 6.728E-07 | 2.866E-12{ = 2.867€-12 7.063e-061 1.010e-08| 7.133e-14] < 8.592e-07
7 900 3.025E-06 | 4.893E-07| 1.480€-12| = 1.483E-12 4.797€-06 | 7.110£-09] 3.410£-14| < 6.040€-07
8 1000 2.251E-06| 3.740t-07| B8.416E-13| = 8.427€E-13 3.427€-06 | 5.330E-09| 1.827e-14| & 4,354€-07
9 1100 1.736€-06 | 2.993€-07| S5.195€-13] = §.196E-13 2.539E-061 4.080E-09{ 1.036E-14] ¢ 3.271E-07
10 1200 1.372e-06 | 2.436E-07 | 3.343t-13| = 3.344E-13 1.940E-06 | 3.240e-09{ 6.284E-15{ < 2.532e-07

*

Reliability-Conditioned Advanced Second Moment
Length Still Water Wave Still Water Wave

Ship ft Bending Moment | Bending Moment | Bending Moment | Bending Moment
1 300 0.91879 0.92093 0.63333 0.99852
2 400 0.90386 0.90661 0.62502 0.99839
3 500 0.89089 0.89367 0.62084 0.99825
4 600 0.88025 0.88025 0.61665 0.99809
5 700 0.86776 0.86776 0.61665 0.99794
6 800 0.85276 0.85276 0.61665 0.99779
7 900 0.84258 0.84258 0.61665 0.99772
' 8 1000 0.83248 0.83248 0.61665 0.99763
9 1100 0.82156 0.82156 0.61665 0.99756
10 1200 0.81142 0.81142 0.61665 0.99749

Strength COV = .10 (Normal), Still Water COV = .091 (Normal), and Wave COV = 1.0 {Exponential)

Table 7 CODF's of the load variables at the faliure points for Series 60 ships,
using ABS rules for finding load mean vaiues

* A1l catculations assumed still water moment COV = 091 (Normal) and wave

moment COV = 1.0 (Exponential)

there is a significant difference in the values of the partial safety
factors between the two approaches. Yet given the values of the
loads, both sets of partial safety factors when used in equation
{85) produce the same level or resistance. The advantage of the
RC approach is that it is not dependent on determining a value of
B. For code calibraticn it can quickly and easily determine the
partial safety factors without first determining a probability of
failure. In addition. while the ASM solution may not be unique,
the RC method provides a consistent logic which defines a
unique. most likely failure point in terms of the PDF’s and CDF’s
of the random variables. In Table 6 the PDF’s for the variables
at the failure points are compared. For the RC method the
product of the load PDF s is approximately equal to the strength
PDF. This is not the case for the ASM approach, confirming
that it did not select the most likely failure point. Table 7 gives

MARCH 1987

the cumulative distribution functions of the load variables at the
failure point. For the RC method the CDF’s of the load are
approximately equal. but for the ASM method they are consider-
ably different. This would indicate that the failure point value
of the stillwater load effect in the ASM case is too low, because
there is a significant chance of exceeding it. If this value is too
low, then to remain on the failure surface the value of the wave
load failure point is too high, and there is almost no chance of
exceeding the value.

The values determined for the partial safety factors are plotted
in Fig. 4 along with B for each ship length. This shows that the
reliability implied by the ABS rules decreases with increasing
ship length [7]. But the values for 0 and vy, remain fairlyv
constant. Only the v, changes with length and that is nearly
linear.
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Fig. 4 Partial safety factors—calibrated using ABS rules for vessel strength: Series
60; Cg=0.70; L/B= 7.0
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Fig. 5 Partial safety factors—constant P—calibrated using ABS rules for loads:
Series 60; Cg = 0.70; L/B= 7.0

Using a linear regression for deiermining an equation in terms L., = length of ship, ft
of ship length to fit the v, curve, a very reasonable equation for
longitudinal strength could be written Equations (36a) and (36b) would represent the ABS Longitudi-

nal Strength Rulesin an LRFD format. An alternative approach

would be to require a constant value of 8 or Py for all lengths.

Figure 5 shows the partial safety factors for the ten ships using a

constant Py = 0.000 233 or 8 = 3.5. Linear regressions for the

or partial factors would result in an equation for the longitudinal
strength in the same form as equation (36a), but with

(36)

w

_ _ L,\ -
049R=11L_ +(273-0094 =)L
100

¢R = ‘YSW[-‘su + ‘YuL-w (36(1) L
- wlL
¢ =049 ) LwL
Yoo = 11 Yow = (1.1502 - 0.0315 m) (37)
L. L
=273 094 — 36b =(3.0-067 =~
b 1000 ( ) Y (3 0-06 1000)
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“~Tormats.

Summary and conclusion

The mean-value first-order second-moment (MVFOSM) and
the advanced second-moment (ASM) methods are being used to
determine partial safetv factors. Neither of the methods can
consistently and accurately handle random variables of other
than normal distributions. The ASM method does not provide a
logic which can uniquely define a failure point and thus partial
safetv factors. It is also possible that design formats based on
these methods may result in engineering designs of different
reliability levels than those specified in developing the design
The “exact” method has not been used to date, but
shows considerable promise for the types of problems for which it
is suited. This method correctly finds the most likely failure
points and gives the correct partial safety factors for the reliabil-
ity level specified. It is currently limited to cases of two vari-
ables. All three methods are evaluated in this paper. A reliabil-
itv-conditioned (RC) method is proposed here to overcome the
shortcomings of the MV'FOSM and ASM methods. For two-
variable problems it provides the same solutions as the “exact”
method. However, the RC method has the additional capability
of handling multivariable linear limit states with any probability
distribution and may easilv be extended to nonlinear limit states.
The RC methed can be utilized in the development of LRFD
format design codes or in the calibration of existing codes.
When developing new codes the required value of resistance for
a given safety level is first found using any of several methods.
including simulation with variance reduction techniques. Then
the RC method is used to find the partial safety factors required
to give the desired level of safety. For code calibration, only the
latter step is required.

The method proposed in this paper is but another tool tor use
in reliability-based design. Much work remains to be done in
evaluating the uncertainties associated with the loads, resistance
and the mathematical procedures used. As more work is done in
this area. the RC method will be available to quickly apply the
new knowledge

Acknowledgments

The authors wouid like to acknowledge the Naval Academy
Research Council and the Computer Center. College of Engi-
neering (Minta Martin Fund) at ihie University of Marvland. for
their partial support.

References

1

I "API Recommendec Practice for Planning. Designing. and Con-
structing Fived Offshore Piatforms.” AP1 RP2A. American Petroleum
Institute. 12th ed . Dallas. Tex . 1981

MARCH 1987

2 "Building Code Requirements for Reinforced Concrete,” ACI
Standard 518-83. American Concrete Institute, Detroit, Mich.. 1983.

3 “Common Unified Rules for Different Tvpes of Construction
and Material.” Bulletin D'Information No. 124E. Comite Euro-Interna-
tional Beton. Paris, April 1978.

4 Ellingwood. B. R., Galambos. T. V.. MacGregor, J. C.. and Cor-
nell. A. C.. "Development of a Probability Based Load Criterion for
American Nation Standard A58." National Bureau of Standards, Special
Publication No. 577. June 1980.

5 “First Order Reliabilitv Concepts for Design Codes.” Bulletin
D'Information No. 112, Comite European Beton, Munich. Julv 1976.

6 “National Building Code of Canada.” National Research Council
of Canada. Ottawa, 1977.

7 Mansour. A. E. et al. “Implementation of Reliability Methods to
Marine Structures.” Transactions, SNAME. Vol. 92, 1984.

8 Mansour, A. E.. "Methods of Computing the Probability of Fail-
ure Under Extreme Values of Bending Moment.” JOURNAL OF SHIP
RESEARCH. Vol. 16, No. 2, June 1972.

9 Mansour. A. E., "Probabilistic Design Concepts in Ship Structural
Safety and Reliability.” Transactions. SNAME. Vol. 80, 1972, pp. 64-
97.

10 Mansour. A. E.. "Approximate Probabilistic Method of Calculat- .
ing Ship Longitudinal Strength.” JOURN AL OF SHIP RESEARCH. Vol. 18,
No. 3. Sept. 1974. pp. 203-213.

11 Mansour. A. E. and Faulkner, D.. "On Applying the Statistical
Approach to Extreme Sea Loads and Ship Hull Strength.” Transactions.
RINA. Vol 114, 1972, pp. 27-314.

12 Avvub. B. M. and White. G. }.. "Reliability-Condition Partial
Safety Factors.” Journal of Structural Engineering, American Society
of Civil Engineers. Vol. 113. No. 2, Paper No. 21241. Feb. 1957.

13 Ang. A H-S.. “Structural Risk Analysis and Reliability Based
Design.” Journal of the Structural Division. American Society of Civil
Engineers. Vol. 99. No. ST9. Paper 1011, Sept. 1973. pp. 1§91-1910.

14  Ang. A H-S. and Cornell. C. A.. "Reliabilitv Bases of Structural
Safetv and Design.” Journal of the Structural Division, American Soci-
ety of Civil Engineers. Vol. 100. No. St9. Paper 10777, Sept. 1974. pp.
1755-1769

15 Avivub. B. M. and Haldar. A.. "Practical Structural Reliability
Techniques.” Journal of Structural Engineering. American Saciety of
Civil Engineers. Vol. 110. No. 8. Paper No. 19062, Aug. 1984.

16 Benjamin. J. R. and Cornell. C. A.. Probability. Statistics. and
Decisions for Civil Engineers. McGraw-Hill. New York. 1970.

17 Hasofer. A. M. and Lind. N. C.. "Exact and Invariant Second-
Moment Code Format.” Journal of the Engineering Mechanics Divi-
sion. American Society of Civil Engineers. Vol. 100. No. EMI. Paper
10376. Feb. 1974. pp. 111-121.

18 Ang. A H-S. and Tang. W. H.. Probability Concepts in Engi-
neering Planning and Design. Vol. 2—Decision. Risk. and Reliability.
Wilev. New York. 1983

19 Thoft-Christensen. P. and Baker. M. .. Structural Reliability
Theory and Its Applications. Springer-Verlag. New York. 1982. pp. 96~
101.

20 White. G J. and Ayyub. B. M.. “Reliability Methods for Ship
Structures.” Naval Engineers journal Vol 97, No. 4. Mav 1983. pp. 86—
96.

21 Rackwitz. R and Fiessler. B.. “Structural Reliability Under Com-
bined Random Load Sequences.” Computers and Structures. Vol. 9.
1978, pp. 459-494

69



