Journal of Ship Research, Vol. 41, No. 1, March 1997, pp. 57-68

Reliability and Uncertainty Evaluation for Longitudinal Bending of

Hull Girders of Surface Ships

Ru-Jen Chao' and Bilal M. Ayyub®

Structural reliability and uncertainty assessment of hull-girder bending of surface ships requires the
consideration of the following three aspects: (1) structural strength, (2) loads, and (3) methods of
reliability analysis. A methodology was developed to assess the reliability of hull girders subjected
to extreme bending moments. The methodology is based on ultimate strength assessment of
hull-girder bending using an incremental strain compatibility method. Two reliability assessment
methods—(1) advanced second moment (ASM) method, and (2) Monte Carlo simulation (MCS)
method with variance reduction techniques—were employed for structural reliability assessment of
hull-girder bending of surface ships. This study demonstrates the structural reliability evaluation of
hull-girder bending of ships (1) by considering its strength parameters as random variables, and (2)
by considering a non-closed performance function using both reliability methods. This technique
can also be applied to a closed-form expression of the performance function. Utilizing such a
methodology, ultimate strength and loads for hull-girder bending can be developed individually
as modules, and then combined into a non-closed form in a performance function. Simulation
methods are also used to assess the uncertainty in hull girder strength due to uncertainties in
basic random variables. Examples using the ASM and MCS methods for reliability assessment are

also presented.

1. Introduction

STRUCTURAL reliability assessment of ships requires the con-
sideration of the following three aspects: (1) loads, (2) struc-
tural strength, and (3) methods of reliability analysis. The loads
need to be defined in terms of their probabilistic characteristics
based on a sea-operational profile of a ship. Extreme analysis
and stochastic load combinations are also needed for ship struc-
tural reliability assessment. The probabilistic characteristics of
the structural strength of the ship need to be evaluated based
on its basic strength variables, prediction models, and asso-
ciated uncertainties including modeling errors. Serviceability
and strength failure modes need to be considered at different
levels of the ship, i.e., hull girder, grillage, panel, plate, and de-
tails. Reliability assessment. methods need to be selected based
on the available information, desired accuracy, and available
resources for performing the assessment. The reliability assess-
ment methods result in reliability indices and failure probabili-
ties for the failure modes of interest at the different levels. The
resulting reliability can be compared with target reliability lev-
els as a checking procedure. Reliability assessment is needed
for reliability-based analysis of existing structures as well as in
reliability-based design or the development of reliability-based
design criteria.

A probability-based reliability and uncertainty assessment
methodology for the hull-girder bending of ships was developed,
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and is described in this paper. The computational procedure of
the methodology was developed in a modular form. The devel-
opment of reliability-based analysis for ship structures needs
to be performed at several levels of structural response and
strength. These levels are the hull girder, grillage, panel, plates,
and details. The development, in this paper, of the reliability
assessment methodology for hull-girder bending of ships can
be viewed as a prototype approach. Similar procedures can be
developed for other failure modes and/or levels.

The development of the methodology required the definition
of a performance function for hull-girder bending, development
of a library of probability functions (Ayyub & Chao 1994),
development of the strength module, development of structural
reliability assessment module, development of user interfaces,
and selection and performance of test cases.

2. Structural reliability assessment

The reliability of an engineering system can be defined as its
ability to fulfill its design purpose for some time period. The
theory of probability provides the fundamental basis to mea-
sure this ability. The reliability of a structure can be viewed
as the probability of its satisfactory performance according
to some performance functions under specific service and ex-
treme conditions within a stated time period. In estimating
this probability, system uncertainties are modeled as random
variables with mean values, variances, and probability distri-
bution functions. Many methods have been proposed for struc-
tural reliability assessment purposes, such as the advanced sec-
ond moment (ASM) method, and computer Monte Carlo sim-
ulation (Ayyub & Haldar 1984). In this section, two proba-
bilistic methods for reliability assessment are described. They
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are (1) advanced second moment (ASM) method, and (2) the
Monte Carlo simulation (MCS) method with variance reduc-
tion techniques (VRT) using conditional expectation (CE) and
antithetic variates (AV).

Advanced second moment (ASM) method

The reliability of a structure can be determined based on a
performance function in terms of basic random variables X;’s
for structural strength and relevant loads. Mathematically, the
performance function Z can be described as

Z = Z(leXQ,v" . 7X’n,)
= Structural strength — Load effect (1)

The failure surface (or the limit state) can be defined as Z = 0.
Accordingly, when Z < 0, the structure is in the failure state,
and when Z > 0 it is in the safe state. The failure probability
Py of a structure can be given by the integral

2)
where fx, x,. . x,(z1,%2,...,2n) is the joint probability den-
sity function (PDF) for the basic random variables X,’s, and
the integration is performed over the region in which Z < 0.
In general, the joint PDF is unknown, and the integral is a
formidable task. For practical purposes, alternative methods of
evaluating Py are necessary.

Reliability index—Instead of using the direct integration giv-
en by equation (2), the performance function Z in equation (1)
can be expanded using a Taylor series about the mean value
of X’s and then truncated at the linear terms. Therefore, the
first-order approximate mean and variance of Z can be shown,
respectively, as

Z% Z(AX;17X27“'7X”) (3)
and n oo
2 07 oz v
=22 (%) (5;?]) ConlXi X))
i=1 j=

where C'ov(X;, X;) is the covariance of X; and X; Z = mean of
Z; and o? = variance of Z. The partial derivatives of 82/9X;

= effective cross-sectional area
ASM = advanced second moment
(method)
AV = antithetic variates
CDF = cumulative distribution function
JE = conditional expectation
COV = coefficient of variation
(C'ov = covariance
d = total derivative
E = expectation
F' = cumulative distribution function
or force
f = probability density function
FORM = first-order reliability method
L = load

MCS = Monte Carlo simulation
n = total number of components
N = number of simulation cycles
NA = neutral axis
P = probability

o »Dwe

= strain

Nomenclature

PDF = probability density function
RV = random variable
Stddv = standard deviation
U = random variable
ULTSTR = ultimate strength
V' = random variable
Var = variance
VBUSA = visual BASIC with ULTSTR,
Simulation, and ASM
VRT = variance reduction techniques
X = random variable
X = mean value of X
y = distance to the centroid for a
structural component
Y = random variable
M = moment Z = performance function
= directional cosine
= reliability index
= very small quantity
= acceptable tolerance

are evaluated at the mean values of the basic random vari-
ables. For statistically independent random variables, the vari-
ance can be simplified as

n 2
0z
b= ok (2 ®)
i=1 7

A measure of reliability can be estimated by introducing the
reliability index 3 that is based on the mean and standard de-
viation of Z as B
p=2 (©)
=

If Z is normally distributed, then it can be shown that the
failure probability Py is

Py =1-9(p) (7)

where ® is the cumulative distribution function (CDF) of stan-
dard normal variate. The aforementioned procedure of equa-
tions (3) to (7) produces accurate results when the random
variables are normally distributed and the performance func-
tion Z is linear.

Nonlinear performance functions—For nonlinear perfor-
mance functions, the Taylor series expansion of Z is linearized
at some point on the failure surface called the design point or
the most likely failure point rather than at the mean. Assuming
the original basic variables X;’s are uncorrelated, the following
transformation can be used:

y, = XizX ®)

ox,

If X;’s are correlated, they need to be transformed to uncorre-
lated random variables (e.g., Thoft-Christensen & Baker 1982,
Ang & Tang 1990). The reliability index 3 is defined as the
shortest distance to the failure surface from the origin in the
reduced Y-coordinate system. The point on the failure surface
that corresponds to the shortest distance is the most likely
failure point. Using the original X-coordinate system, the reli-
ability index 8 and design point (X7, X3,...,X;;) can be de-
termined by solving the following system of nonlinear equations
iteratively for 3:

® = cumulative distribution
function of standard
normal variate

¢ = probability density function
of standard normal variate

o = stress

6§ = curvature

0 = partial derivative

Subscripts
f = failure
i = ith iteration (or component)
s = success or still water
w = wave
y = yield
Z = performance function

Superscripts
N = equivalent normal distribution
(1), (2) = components of simulation cycle
—1 = inverse
* = design point
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0Z
a; = (WL) OXI (9)

82 12 1/2
2 (88)7 %,
X] = X; - i fos,
7X;l() ::O

(10)
(11)

where «; is the directional cosine, and the partial directives are
evaluated at design point. Then, equation (7) can be used to
evaluate P;. However, the above formulation is limited to nor-
mally distributed random variables. The above ASM method
is also called the first-order reliability method (FORM) as de-
scribed by Ang & Tang (1990), Ayyub & Haldar (1984), and
White & Ayyub (1985).

Equivalent normal distributions—If a random variable X is
not normally distributed, then it needs to be transformed to an
equivalent normally distributed random variable. The param-

eters of the equivalent normal distribution, XiN and U%, can
be estimated by imposing two conditions (Rackwitz & Fiessler
1976,1978). The cumulative distribution functions (CDF) and
probability density functions (PDF) of a non-normal random
variable and its equivalent normal variable should be equal at
the design point on the failure surface. The first condition can
be expressed as

Z(XP X5, ...

xX*_ XN .
| —Fx—" | =F(X0) (12a)
oy
The second condition is
xX* . XN )
o | ——x—| = filX7) (12b)
D\

where F; = non-normal CDF, f; = non-normal PDF, & = the
CDF of standard normal variate, and ¢ = the PDF of standard
normal variate. The standard deviation and mean of equivalent
normal distributions can be shown, respectively, to be

P Ca 310.59))

7Xi fi(X7) (13)

and N
X=X~

&M E (X)X, (14)
Having determined O’)"\(]I and X} for each random variable, 8
can be solved using the same procedure of equations (9) to (11).

The ASM method is capable of dealing with nonlinear per-
formance functions and non-normal probability distributions.
However, the accuracy of the solution and the convergence of
the procedure depend on the nonlinearity of the performance
function in the vicinity of design point and the origin. If there
are several local minimum distances to the origin, the solu-
tion process may not converge onto the global minimum. The
failure probability calculated from the reliability index 3 us-
ing equation (7) is based on normally distributed performance
functions. Therefore, the resulting failure probability P based
on the ASM is approximate except for linear performance func-
tions because it does not account for any nonlinearity in the
performance functions.

Numerical algorithms—The ASM method can be used to
accurately assess, for all practical purposes, the reliability of
a structure with a nonlinear performance function that may
include non-normal random variables. Also, the performance
function can be in a form of closed or non-closed expression.
The ASM algorithm can be summarized by the following steps:

ALGORITHM 1

1. Assign the mean value for each random variable as a start-
ing design point value, ie., (X7,X3,...,Xn) = (X,
Xo,..., Xn).
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2. Compute the standard deviation and mean of the equiva-
lent normal distribution for each non-normal random vari-
able using equations (13) and (14).

3. Compute the partial derivative 8Z/3X; of the performance
function with respect to each random variable evaluated at
the design point as needed by equation (9).

4. Compute the directional cosine a; for each random variable
as given in equation (9) at the design point.

5. Compute the reliability index 3 by substituting equation
(10) into equation (11) and satisfying the limit state Z =
0 in equation (11) using a numerical root-finding method.

6. Compute a new estimate of the design point by substituting
the resulting reliability index (§ obtained in step 5 into
equation (10).

7. Repeat steps 2 to 6 until the reliability index 3 converges
within an acceptable tolerance.

End of Algorithm 1.

Simulation methods

The Monte Carlo simulation (MCS) technique is basically a
sampling process that can be used to estimate the failure prob-
ability of a structure. The direct simulation comprises drawing
samples of the basic variables according to their probabilis-
tic characteristics and then feeding them into the performance
function Z as given by equation (1). Assuming Ny to be the
number of simulation cycles for which Z < 0 in a total N sim-
ulation cycles, then an estimate of the mean failure probability
I_’f can be expressed as

_ Ny
Py=—

I='N
The estimated Pf should approach the true value for the popu-

lation when N approaches infinity. The variance of the Pf can
be approximately computed as

(15)

(1— Ps)Py
N

Therefore, the coefficient of variation of the estimate failure

probability is
_ 1 (1- Pf)Pf
COV(Pf) = =4/ ————
Fr) PV N

These equations show that the direct simulation can be eco-
nomically (in terms of computation time) prohibitive in some
cases, especially for small failure probabilities. In order to
achieve the desired accuracy of simulation and reduce the sam-
ple error without increasing sample size, combined variance re-
duction techniques (VRT) are used for this purpose (Ayyub &
Haldar 1984).

Conditional expectation (CE) variance reduction technique—
The conditional expectation (CE) variance reduction technique
{VRT) reduces the variance of an estimated value by condition-
ing on all random variables except one or more random vari-
ables with relatively large variability, therefore removing the
effect of their variability on the sampling procedure. The the-
ory behind this technique is based on the fact that the total
variance of X can be given in terms of conditional means and
variances of X conditioned on Y as follows (Ang & Tang 1975):

Var(X) = Ey[Var(X | Y)]| + Vary [E(X | Y)] (18)

The subscript Y on E and Var shows that the expectation and
variance are with respect to Y. Rearranging the above equation
produces the following:

Vary[E(X | V)] = Var(X) - Ey[Var(X | Y)) < Var(X)
(19)

Var(Py) = (16)

(17
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Equation (19) indicates that computing E(X | Y) analytically
from the random variable Y results in a smaller variance than
directly computing X (Ayyub & Haldar 1984). In simulation,
this concept can be utilized by not generating random numbers
for those random variables with large variability. For instance,
consider a performance function with three random variables
as follows:

Z=2(X,X:,X3)=X| — Xo — X3 (20)

If X3 has the largest variability, then the failure probability Py
of equation (20) can be written as

Pf:lﬁps:l‘“P(Xl‘"XQ“X3>0) (21)
For the ith simulation cycle
Pf/ =1-P(X3<X| — X2 | X1 = 1, X2 = 1722')
=1-Fy,(z1; — z27) (22)

Therefore, the failure probability can be calculated by not gen-
erating random number for X3. The average failure probability
can then be computed for N simulation cycles.

Antithetic variates (AV, variance reduction technique—The
antithetic variates (AV) variance reduction technique reduces
the variance of an estimated mean value by introducing a neg-
ative correlation between two sets of samples. Considering two

unbiased estimates XL.(]) and X,L.(Q) of a mean X from two sep-

arate samples, these two estimates can be combined to form
another estimate by taking the average as

The expected value of X; is
s [ 50 )
- % [” (Xfl)) +E (Xi@)”
:é()‘“—():x (24)

which means that X; is an unbiased estimate of X. It also can
be shown that the corresponding variance is

Var(X;) = i [Var (Xi“)) + Var (Xi(Q))

¥ 2Cou <X§1), Xf”) } (25)

Therefore if 5(( b

i
Cov(Xfl), XT(Z)) < 0, the variance of the estimate X; can be re-
duced. Thus if X;U is a random variable uniformly distributed

in (0, 1), then X% Xi(l) is also uniformly distributed in

I3

and X((‘z) are negatively correlated, ie.,

(0, 1) and the covariance of XZ(]) and XZ-(Z) is negative. Conse-
quently, the variance of X, can be reduced.

Combined variance reduction techniques (VRT) of condition-
al expectation (CE) and antithetic variates (AV)—The variance
of an estimated quantity using simulation can be reduced even
more by combining the conditional expectation (CE) and anti-
thetic variates (AV). The result of this combination is as good
as many other methods (Ayyub & Haldar 1984). The sample
mean of the probability of failure is given by

N
Py = %pri

i=]

(26)
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This can be considered an unbiased estimation of the popula-
tion mean. The uncertainty associated with this estimation can
be expressed in terms of its variance as

N
- Var(Py) 1 1 _
Var(Pp) = ——1. = = 1 > (Pri— Pp)*| (27)
i=1

N N
The algorithm of the combined VRT of CE and AV can be
summarized as follows:

ALGORITHM 2

1. Identify the basic variable with the most variability in the
performance function in equation (1).

2. Condition the variable in step 1 with respect to all the
remaining variables X;’s in the performance function.

3. Generate a uniformly distributed random deviate U; for
each remaining variable X; as its value of the cumulative
distribution function (CDF), and compute V; = 1 — U;
for each remaining X; as its second uniformly distributed
and negatively correlated CDF.

4. Compute the inverse of U; and V; by calling the inverse
function of CDF to obtain the corresponding random vari-

ables Xi(l) and Xi(2)'

5. Compute the performance function Zi(l) and Zi(Q) in
step 1.

6. Compute the failure probability P}ll.) and Pf(f.) using the

probabilistic characteristics of the variable identified in
step 1.

7. Compute the average failure probability Py, = (Pf(i) +
2
P2,
8. Repeat steps 3 to 7 N times.
9. Compute the statistics of the failure probability for N

sirnulation cycles.
End of Algorithm 2.

3. Ultimate strength and
loss for hull-girder bending

Ultimate strength of hull-girder bending

The strength of a hull girder subjected to a bending moment
can be described using a moment-curvature relationship which
provides the strength-moment development of the hull girder at
different levels of curvature. A typical moment-curvature rela-
tionship includes two segments, a hogging moment segment and
a sagging moment segment. Figure 1 shows a moment-curvature
relationship at a section under a hogging loading condition. The
maximum moment strength in the moment-curvature relation-
ship can be defined as the ultimate strength of the hull-girder
bending.

The behavior of a hull-girder subjected to a longitudinal
bending moment is very much dependent on that of its in-
dividual elements (Paik 1993). A ductile failure behavior of a
hull girder can be assumed as a result of a sequence of failure
of local components rather than of an overall concurrent insta-
bility of the entire cross section (Adamchak 1982). These local
components composed of the cross section of a hull girder can
be represented as a single plate-beam combination, an individ-
ual gross panel composed of several plate-beams, or a complete
cross-stiffened grillage.

The computation of the ultimate strength of a hull-girder
bending of surface ships primarily contains the following steps:
(1) dividing the cross section of a hull-girder into a set of gross
panels and hard corners, (2) imposing an assumed curvature
on the hull-girder in a small finite increment, and (3) solving
for the strength moment on the midship crosssection. Steps 2
and 3 should be repeated until a predefined failure condition is
reached, then the moment-curvature relationship of hull-girder
bending can be obtained. This condition can be, for example,
the peak of the moment-curvature curve.
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Fig. 1 Moment-curvature relationship at a cross section

The approach for calculating the resisting moment of a hull-
girder’s cross section at each assumed increment of curvature
is based on the linear-strain assumption along the depth of
the cross section. However, the stress distribution along the
depth of the section is not necessarily linear. The location of
zero strain is referred to as the instantaneous or incremental
neutral axis (NA) for the curvature condition imposed on the
cross section. At each curvature level, the location of the in-
stantaneous neutral axis can be determined by satisfying the
condition of static force equilibrium using numerical methods.
The static force equilibrium state can be described as the state
where the summation of all force components in the cross sec-
tion corresponding to various strain and stress levels along the
cross section is equal to zero. This condition of statics can be
expressed as follows:

(28)

where F' = force, subscript i = ith structural component, and n
= total number of components. In the computer program, this
condition is used to solve for the location of the instantaneous
neutral axis using a numerical (iterative) procedure such that
the net axial force AF on the cross section is zero, i.e.

n
AF -- ZaiAi =0

where o, = stress of ith structural component, and A; = ef-
fective cross-sectional area of the ith structural component. In
the iteration process, the position of the instantaneous neutral
axis can be determined such that the value of the net force
is less than some predefined acceptable tolerance §. Therefore,

(29)

MARCH 1997

the equation (29) can be written as follows:

AF:iaiAi <6

K

(30)

Once the neutral axis is determined, the strain for each com-
ponent can be determined by using similar triangles based on
the linear strain diagram. Also, the corresponding stresses and
forces for the structural components can be obtained through
their corresponding stress-strain relationships and effective ar-
eas. The resisting bending moment (M) is computed by sum-
ming the force contributions of all the elements of the cross
section with respect to an arbitrary, but computationally con-
venient, reference position. The resulting moment does not de-
pend on the choice of this reference position since the section
is under pure bending. The moment condition can be as

n n
M= ZFiyi = ZUiAiYi
i i

where y; is the distance from the reference position (for example
the bottom or top of the cross section) to the centroid of the
ith structural component.

The moment-curvature predication for a section is, therefore,
based on the assumption that once instability is detected in
a given mode for one element, the behavior follows through
to ultimate failure of the cross section in that same mode for
the element (Adamchak 1982). In hull-girder analysis, gross
panel elements of a cross section can fail either through material
yielding, material rupture, or through some form of structural
instability.

A computer program called ULTSTR (ULTimate STRength)
was used to determine the moment-curvature relationship at
any section of the hull girder. This program was developed by
Adamchak (1982) for the U.S. Navy. Analytical models used in
this computer program with detailed formulation are provided
by, for example, Evans (1975); Faulkner, Adamchak, Snyder, &
Vetter (1973); Adamchak (1975,1979,1982); Dow, Hugill, Clark
& Smith (1981); Ostapenko (1981); and Clarkson (1965). Two
main instability failure modes were incorporated in ULTSTR.
These two failure modes are Euler beam-column buckling and
stiffener lateral-torsional buckling (tripping). Actually, in ULT-
STR, Euler beam-column buckling was subdivided into two
distinct types of failure patterns. The first type is character-
ized by all lateral deformations occurring in the same direc-
tion. This failure type is primarily a yield-strength dependent
behavior, and is assumed to be a possible failure mode when
either lateral loading or initial fabrication distortions, or both,
are present. The second type is characterized by an alternat-
ing buckling pattern in direction. This failure type is primarily
Young’s modulus dependent concerning initial buckling, and it
can occur whether or not lateral load or initial distortions or
both are present (Adamchak 1982).

Plate buckling and grillage general instability are not in-
cluded separately as failure modes in the current version of
ULTSTR. The influence of plate buckling failure on longitudi-
nal hull-girder collapse is considered in an indirect form through
using effective width or breadth of plates of gross panels that
form the basis of the ultimate strength analysis. Grillage gen-
eral instability failure is not currently included because it is
seldom found as the primary failure mode in geometric struc-
tural proportions that are typical to surface ships currently in
design or service (Adamchak 1982).

The relationship between an applied axial force (load) and
strain for an element can be described by its load-shortening
curve consisting of three zones. The first zone is called the sta-
ble zone in which the relationship between the load and strain
is very nearly linear. (The stress-strain behavior is assumed lin-
ear. However, because the plating effectiveness is stress depen-
dent, the relationship between load and strain deviates slightly
from linearity.) When the applied load approaches its critical

(31)
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(i.e., buckling load) or yield value of a structural element, this
quasi-linear relationship is not valid anymore. The second zone
is called the plateau that occurs after the loading reaches the
critical or yield value of a structural element. In this zone, the
structural element continues to deform without any increase in
the applied load. The third zone is called the unloading zone
and is appropriate for compression only. Reducing the applied
load in order to maintain a weakened element (after its fail-
ure) in static equilibrium is called unloading. This unloading
zone can significantly affect the behavior of the overall hull-
girder cross section. Two recent enhancements of ULTSTR were
made. In the second zone, a rupture strain can now be defined
so that the capacity of a gross panel or a hard corner under
tension can be reduced to zero upon rupture. In the third zone,
users now can define the unloading type for a hard corner under
compression (Adamchak 1982).

Loads for hull-girder bending

Load effects on a ship’s hull-girder subjected to a sea and
operational environment can be classified into effects due to (1)
stillwater, (2) passing wave. (3) wave whipping, and (4) wave
slamming. In structural reliability assessment, extreme analysis
and stochastic combination of these load effects are needed.
Information on loads, extreme analysis and load combination
is provided in e.g., Ayyub, Beach, & Packard (1995).

In this paper, only two types of loads, (1) stillwater bending
and (2) wave bending, were selected to demonstrate the devel-
opment of reliability assessment of hull-girder bending of ships.
Therefore, the load component in equation (1) can be expressed
as

L= Ls+ Ly (32)

where L = total load; Ls = stillwater bending; and L., = wave
bending. The stillwater bending is usually considered as having
a normal distribution. The wave bending follows, for example, a
Rayleigh distribution for a short time period, and it follows an
exponential distribution for a long time period (e.g., Mansour
1972, Boe et al 1974).

In order to illustrate the analytic method for structural re-
liability assessment of hull-girder bending, however, these two
loads are treated as two random variables with normal proba-
bility distributions. The coefficient of variation (COV) of wave
bending was assumed to be larger than that of the stillwater
bending for illustration; although recent studies have shown
that stillwater can have a larger COV than that of the lifetime
extreme wave bending. The stillwater and wave bending in fu-
ture development can be revised and replaced by any module
or any load function that can involve more elaborate load cal-
culations. Also, other load combinations can be used based on
similar concepts.

4. Reliability assessment for hull-girder bending
Advanced second moment method

The ASM method described earlier requires a closed-perfor-
mance function in equation (1), but the failure modes for hull-
girder bending of ships cannot generally be expressed using a
simple closed form for the strength side of the performance
function. However, the ultimate moment in the moment-curva-
ture relationship can be obtained from an ultimate strength
assessment program for hull-girder bending such as ULTSTR.
Therefore using this ultimate moment, the performance func-
tion Z of equation (1) can be expressed as

Z=M(X1,X2,...,Xn_2) — Ls — Lu (33)

where M is the ultimate resisting moment for a section from
ULTSTR, Ls is the stillwater bending moment that corresponds
to the section with strength M, L., is the wave bending mo-
ment that corresponds to the section with strength M, and X;
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is a basic strength random variable such as geometry or mate-
rial property. The loads Ls and L., are treated in this section
as single random variables, whereas in reality these loads are
also functions of several basic random variables. Future work
in this area can be directed towards generalizing equation (33)
by treating these loads as functions of other random variables.
However, the reliability assessment methods as presented in
this section are still applicable. The objectives of this section
are to introduce the needed changes to the ASM in order to
handle non-closed forms of the performance function.

The first change to the method is needed in computing the
directional cosines as given in equation (9) for each random
variable. These directional cosines require the computation of
the partial derivatives of Z with respect to the random vari-
ables. The partial derivatives with respect to X;, Ls, and Ly
can be determined, respectively, as

92 _9Z oM . OM _ oM

8X;  OMoX;, =~ 8X; 08X
_OM(X1,X2,..., Xn—2)
= e (34)

8z

3L, = -1 (35)

and
oA
Lo -1 (36)

The partial derivative with respect to each X; in equation
(34) cannot be determined analytically. Therefore, a numerical
method for computing these partial derivatives is needed as de-
scribed in Algorithm 3 following equation (40). After finishing
from Algorithm 3, the directional cosine as given by equation
(9) for each random variable can be determined.

The second change to the method is needed in solving for the
reliability index 8 by substituting equation (10) into equation
(33). This solution requires finding the root 3 for the following
expression:

Z:M(X13X27"'7Xn—2)_LS_Lw:Z(ﬂ):O (37)

Therefore, a numerical method for finding the roots of nonlinear
equations is needed as described in Algorithms 4 and 5. After
finding 3, the design point is updated according to equation
(10), therefore completing steps 5 and 6 in Algorithm 1.
Numerical differentiation—By definition, if f(z) is contin-
uous in the domain of z, then the derivative of f(z) can be
expressed as
df(z) _ . flz+Az) - f(z)
dr Alér‘n»o Az (38)

The accuracy of computing the derivative in equation (38) can
be improved as
df (z) flz+ Az) — f(z — Ax)

dr Alalcrgo 2Azx (39)

Therefore, the partial derivative for each X; in equation (34)
can be expressed as

oM _ M(Xl,XQ,...,Xi+AX,H.,Xn_2)
6Xi - AX—0 QAX.L'
M(Xy,Xo,..., X; —AX,..., Xp_9)
- 40
2AX; ( )

This numerical approach can be applied to both closed and non-
closed expressions, and hence it meets the purposes of computer
usage for reliability assessment. Based on equation (40), the
numerical algorithm for computing the partial derivative for a
random variable X; in M can be summarized as follows:
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ALGORITHM 3

1. Compute X;+AX;, in which AXj is a specified very small
quantity (or increment).

2. Compute My = M (X, Xo,..
ing ULTSTR.

3. Compute X; —AXj;, in which AXj] is a specified very small
quantity (or increment).

4. Compute My = M(X;, Xa,..
ing ULTSTR.

5. Estimate 8M/0X; = (M, — M) /2AX;.

6. Repeat steps 1 to 5 for each Xj.

End of Algorithm 3.

.,Xi+AXi,...,Xn_2) us-

.,Xi+AXi,...,Xn72) us-

Numerical solution of roots of equations—Newton’s method
is commonly used for root-finding, but this method does not
always converge to the true values for some cases. Besides,
Newton’s method requires evaluation of the derivative of a
function, which is the main disadvantage because those perfor-
mance functions are expressed in a non-closed form and need a
numerical approach to compute the derivatives. The bisection
method always converges, but the speed of finding roots within
an acceptable tolerance for a nonlinear equation can be slow.
Therefore, a linear interpolation method or regula falsi method
(Gerald & Wheatley 1984) is adopted herein. This method al-
ways converges, and its convergence rate is somewhat slower
than Newton’s method but faster than the bisection method.
Assume that f(z) is continuous in [a, b], and f(a) and f(b) are
of opposite signs. The algorithm of the regula falsi method can
be stated as follows (Gerald & Wheatley 1984):

ALGORITHM 4

Do While (|b — a| > tolerance 1 or |f(c)| > tolerance 2)

c=b— f(b)*(b—a)/(f(b) — f(a))
If f(c) * f(a) <0, then

b=c
Else

a=c
End If

End Do
End of Algorithm 4.

If f(z) has a significant curvature in [a,b], the convergence
speed becomes small (Gerald & Wheatley 1984). The conver-
gence speed can be improved, in this case, by using a modified
linear interpolation method. According to the modified method,
the value of f(z) at the unchanged end position is replaced with
f(x)/2 as described in the following revised algorithm (Gerald
& Wheatley 1984):

ALGORITHM 5

Fa = f(a); Fb= f(b); FF = f(a)
Do While (}b — a| > tolerance 1 or |Fe¢| > tolerance 2)
c=b—Fb*x(b—a)/(Fb— Fa)
Fe = f(c)
If Fex Fa <0, then
b=c
Fb=Fec¢
If Fcx FF > 0, then Fa = Fa/2
Else
a=c
Fa = Fc
If Fc* FF >0, then Fb= Fb/2
End If
FF=Fc
End Do
End of Algorithm 5.

The implementation of computer programs in ASM for find-
ing 3 was based on the modified linear interpolation method.
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Monte Carlo simulation methods

Monte Carlo simulation (MCS) methods also can be used
for reliability assessment of hull girders bending using the same
model (or performance function) as was used for the ASM. In
order to improve the efficiency of MCS methods, variance re-
duction techniques (VRT) can be used. These methods were de-
scribed earlier. The combined VRT of conditional expectation
and antithetic variates is employed in this section for reliabil-
ity assessment. Due to the non-closed nature of M in equation
(33), the basic variable X; in M cannot be chosen as the con-
ditioned random variable even if X; is the one with the highest
variability level. The reason is because M has to be computed
based on ULTSTR in a non-closed form. The only remaining
choices are Ls and Ly. If Ly, has a higher variability level than
Ls, then from equation (33) the survival probability Ps is given
by

PsIP(Z>0):P(M—Ls_Lw>O)
= P(Lw < M — Ls) = E[Fr, (M — Ls)] (41)
where M = M (X1, Xa,...,Xn—2), Fr_, is the cumulative dis-
tribution function {CDF) of L, and E(.) is the expected value.
Therefore, the failure probability Py can be determined as

P;=1-Ps=1-E[F, (M- L) (42)

Therefore, each simulation cycle (ith cycle) is expected to pro-
duce a failure probability Py; based on evaluating the CDF
of L., at generated values of M = M(X1,X2,...,Xn—2) and
L, (ie., M; and Lg;). The sample mean of the probability of
failure (Py) for N simulation cycles is computed as

N
(P =5 (Zsz)
=1

This estimate of Py can be considered an unbiased estimator
of the population value. The variance associated with this es-
timated value is

N
vert) = YA L (LS e
i=1

where Var(Ps) indicates the accuracy in estimating P;. A

smaller value of Var(Py) is always preferred. The coefficient of
variation (COV) for the estimated failure probability is given
by

(43)

N
COV(P;) = %f % (ﬁ S (Pri- Pf)> (45)
i=1

The use of conditional expectation and antithetic variates
in Monte Carlo simulation for the purpose of reliability assess-
ment is defined in Algorithm 2. The use of equation (33) as a
performance function requires the selection of a control variable
which is not randomly generated according to this algorithm.
In the case of hull-girder bending, L., was identified as the
control random variable needed in step 1 of Algorithm 2.

Development of software VBUSA for
reliability assessment

The software of VBUSA (Visual BASIC with ULTSTR, Sim-
ulations, and Advanced Second Moment reliability methods)
was developed and implemented to provide ultimate strength
analysis and reliability assessment of hull-girder bending of sur-
face ships with a friendly user interface (Chao 1995; Ayyub,
Chao, Bruchman, & Adamchak 1995). The VBUSA contains
three main analysis functions: (1) ultimate strength analysis
for hull-girder bending using ULTSTR, (2) reliability assess-
ment using the ASM method, and (3) reliability assessment
using the MCS with combined variance reduction techniques
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Table 1

Example hull girder with a total of 5 random variables

Table 3 Example hull girder with a total of 58 random variables

pe = personal computer, unix = unix-based computer

{VRT) of conditional expectation (CE) and antithetic variates
(AV). In addition to these three main analysis functions, the
user interface of the software allows the preparation of input
data for running these three main analysis functions, viewing
the results of the analysis, and plotting the simulation results
and a ship’s hull-girder cross section. These three main analy-
sis functions were all written in FORTRAN, ?(Sd the interface
portion is written in Microsoft Visual BASIC\Y.

Examples

Three examples are described to illustrate the reliability as-
sessment using the ASM method and the MCS method with
combined variance reduction techniques (VRT) of conditional
expectation (CE) and antithetic variates (AV). The first two
examples are for the purpose of comparing the results from
the two reliability assessment methods, and the third example
shows simulation results and statistical analysis of the moment-
curvature performance for a hull girder based on ULTSTR.

Ezample 1: hull-girder bending with 5 random variables—
The five random variables are shown in Table 1. Three of the
five random variables are the hull-girder design parameters that
include overall height, plate thickness and Young’s modulus.
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Total Random Variables (RV) = 5 Total Random Variables (RV) = 58
Hull-girder strength RV = 3 Hull-girder strength RV = 56
General section RV = 0 General section RV = 4
Name Mean (in) COV(Stddv) { Type Name Mean (in) COV(Stddv) | Type
1 | Compartment length 480.0 | deterministic | Normal 1 | Compartment length 480.0 (0.50) | Normal
2 [ Transverse frame spacing 96.0 | deterministic [ Normal Transverse frame spacing 96.0 (0.25) ] Normal
3 | Effective length (Euler beam- 96.0 | deterministic | Normal 3 | Effective length (Euler beam- 96.0 (0.25) | Normal
column buckling) column buckling)
4 | Effective length (Stiffener 68.0 | deterministic | Normal 4 | Effective length (Stiffener 68.0 (0.25) | Normal
tripping) tripping)
Node - 54 1 Node - 54 RV= 2
Name Mean (in) COV(Stddv) | Type Name Mean (in) COV(Stddv) | Type
1 | Overall height 369.0 1.00E-3 | Normal 1 | Overall height 369.0 (0.50) | Normal
2 | Overall width 310.0 | deterministic } Normal 2 | Overall width 310.0 (0.50) | Normal
Panel - 26 (6 types of thickness) RV = 1 Panel - 26 (6 types of thickness) RV=6x2= 12
Name Mean (in) COV(Stddv) | Type Name Mean (in) COV(Stddv) | Type
1 [ Thickness of plate 0.500 0.10 | Normal 1 | Thickness of plate 0.750-0.250 0.04 | Normal
2 | Tension yield zone (3.0-4.5) 3.000 | deterministic | Normal 2 | Tension yield zone (3.0-4.5) 3.75 0.10 | Normal
Stiffener - 8 RV = 0 Stiffener - 8 RV=8x4= 32
Name Mean (in) COV(Stddv) | Type Name Mean (in) COV(Stddv) [ Type
1 | Overall depth 12.16-3.50 | deterministic | Normal 1 | Overall depth 12.16-3.50 0.05 | Normal
2 | Web thickness 0.26-0.13 | deterministic | Normal 2 | Web thickness 0.26-0.13 0.04 | Normal
3 | Flange width 4.03-2.68 | deterministic | Normal 3 | Flange width 4.03-2.68 0.05 | Normal
4 | Flange thickness 0.42-0.18 | deterministic | Normal 4 | Flange thickness 0.42-0.18 0.04 | Normal
Material - 3 RV = ) Material - 3 RV=3x2= 6
Name Mean (psi) COV(Stddv) | Type Name Mean (psi) COV(Stddv) | Type
1 | Young’s modulus 30.0E+6 0.10 | Normal 1 | Young’s modulus 30.0E+6 0.04 | Normal
2 | Yield stress 80000-33000 | deterministic | Normal Yield stress 84000-34650 0.07 | Normal
Loads RV = 2 Loads RV = 2
Name Mean (Ib-in) | COV(Stddv) | Type Name Mean (Ib-in) | COV(Stddv) | Type
I | Stillwater bending 2.75SE+09 0.15 | Normal 1 | Stillwater bending 2.45E+09 0.15 | Normal
2 | Wave bending 1.00E+09 0.20 | Normal 2 | Wave bending 1.00E+09 0.20 [ Normal
Table 2 Reliability results for example Table 4 Reliability results for example
hull girder with 5 random variables hull girder with 58 random variables
Reliability Method Failure Probability Reliability Reliability Method Failure Probability Reliability
Index Index
ASM 0.657048E-03 3.22061 ASM 0.289984E-04 4.02090
MCS (Cycles = 50,000) MCS (Cycles = 50,000)
1 (CE+AV) (pc seed = -15120) 0.768180E-03 3.16800 1 (CE+AV) (pc seed = 7951) 0.291184E-04 4.01986
2 (CE+AV) (unix seed = -17) 0.641104E-03 3.22019 2 (CE+AV) (unix seed = 74971) 0.399448E-04 3.94477
3 (CE+AV) (unix seed = -371) 0.552852E-03 3.26239 3 (CE+AV) (unix seed = 97361) 0.310100E-04 4.00502

pc = personal computer, unix = unix-based computer

The remaining two random variables are stillwater bending and
wave bending. The results of using the MCS methods with VRT
are shown in Fig. 2. The results for both ASM and MCS with
VRT are summarized in Table 2. Table 2 and Fig. 2 show the
effect of selecting a seed (that is needed in random number
generators) on the estimated failure probability. The simulation
results are at about the same level for all practical purposes for
all cases, and are about the same as the results of ASM.
Ezample 2: hull-girder bending with 58 random variables—
In this example, 58 random variables as shown in Table 3 are
used. The hull girder has 56 random variables for geometry
and material properties. The remaining two variables are the
external loads of stillwater and wave bending. The results of
MCS with VRT are shown in Fig. 3 with using the same scale
as in Fig. 2 in order to compare results. The comparison in-
dicates that the simulation results with five random variables
show larger variability that the corresponding results with 58
random variables. The variability level needs to be related to
the magnitude of the failure probability. In this example, the
reliability index (3 is larger than that of Example 1, which can
be mainly attributed to the lower stillwater bending as can be
compared in Tables 1 and 3, respectively. Also, the nominal
yield stresses in this example were multiplied by a bias factor
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Fig. 3 Simulation results for 58 random variables

of 1.05 to obtain the tabulated mean values, whereas in Exam-
ple 1 this factor was taken as 1.0. The results of ASM and MCS
are summarized in Table 4. Table 4 shows the effect of select-
ing a seed (that is needed in random number generators) on
the estimated failure probability. The simulation results are at
about the same level for all practical purposes for all cases, and
are about the same as the results of ASM. In conclusion, both
examples show agreement in estimating the failure probability
P; for hull-girder bending.

Ezample 3: simulation of hull-girder strength—The same in-
put data used in Example 2 are used in this example. However,
the objective of this example is to investigate the uncertainty
in the resulting moment curvature relationship based on ULT-
STR using MCS with 58 random variables. Figure 4 shows the
moment-curvature relationship with mean and nominal curves.
The 58 input random variables were assumed to have the same
mean and nominal values except for the Young’s modulus and
yield stress. Young’s modulus was assumed to have a mean of
30.0E+06 psi, and nominal value of 29.5E406 psi. The yield
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stress was assumed to have a mean value which 1.05 times its
corresponding nominal value for each material. Table 3 shows
the mean yield values used in this example. Under these spe-
cific assumptions, it can be observed that the nominal moment
is smaller than the mean moment but larger than the mean
minus one standard deviation.

The mean moment-curvature curve as shown in Fig. 4 can
be normalized by dividing the mean moment value by the cor-
responding nominal moment at each curvature. The resulting
normalized curve is shown in Fig. 5. It can be observed that
within the elastic behavior, the ratio of mean to nominal mo-
ment is very close to 1.015. When the imposed curvature is
increased, i.e., the corresponding strain is increased, the mo-
ment approaches its ultimate strength and the ratio has a sharp
change. After reaching ultimate strength, the ratio stays in the
range 1.040 to 1.055.

Figure 6 shows the relationship between the curvature and
the coefficient of variation (COV) of resisting moment. Again,
the COV of the moment stays in the range 3.5% to 4.0% within

JOURNAL OF SHIP RESEARCH 65



6.00E+09 -

niuag 1
y o e
/x*% Lt + 6.00E+08
5.00E+09 /‘* M&%v%.
M .y
Baulse | so0ms08
&ax:x B
4.00E+09
= -—e— Mean —_
3 —— Mean+Standard Deviation T 400E+08 é
TE' 3.00E+09 —a— Mean-Standard Deviation b
g - - Nominal 1 3.00E+08 §
= p
2.00E+09
+ 2.00E+08
1.00E+09 + + 1.00E+08
0.00E+00 0.00E+00
0.00E+00 2.00E-06 4.00E-06 6.00E-06 8.00E-06 1.00E-05 1.20E-05 1.40E-05 1.60E-05
Curvature
Fig. 4 Moment-curvature relationship using 10 000 cycles
1.055
1.050 7 ‘\
1.045 —f ARt / N
/\/ . \
. v o —o
1.040

1.035

1.030 -/

1.025 A /

Mean to Nominal Ratio for Strength Moment

1.020 i
1.015 —
1.010
0.00E+00 2.00E-06 4.00E-06 6.00E-06 8.00E-06 1.00E-05 1.20E-05 1.40E-05 1.60E-05
Curvature
Fig. 5 Mean to nominal ratio for strength moment using 10 000 cycles
7.00E-02 s,
S
g 6.00E-02 d AN
<] ./ *
p N\ N -
5.00E-02 . e
B 7
@ 7
% 4.00E-02 s
E I
g 3.00E-02
>
Y
o
g 2.00E-02
L
9
§
S 1.00E-02
0.00E+00
0.00E+00 2.00E-06 4.00E-06 6.00E-06 8.00E-06 1.00E-05 1.20E-05 140E-05 1.60E-05
Curvature

Fig. 6 Coefficient of variation of strength moment using 10 000 cycles

66 MARCH 1997 JOURNAL OF SHIP RESEARCH



Frequency

0.04

Frequency

(a) At a Curvature = 4.00E-06
B2 Frequency
—e+—Normal
<+ A 2T 0 M W M 0 o~ NN =D
W B ARG QD = o= NN MNT TNV
(=3 < (=] (o) — — — — — — — — — _— — —

b)AtaC

urvature = 8,20E-06

BEE Frequency

—+—Normal

(c) At a Curvature = 1.18E-05

N Frequency

~—+—Normal

Ratio of Random Strength Moment to Nominal Moment

Fig. 7 Strength moment distribution using 10 000 cycles

MARCH 1997

Moment (1b-in)

the elastic range of the section. Upon reaching the maximum
resisting moment, the COV shows a dramatic increase, but it
stays less than 7%.

A frequency histogram based on 10 000 simulation cycles
for the resisting moment at each curvature was developed. At
each curvature level, including the elastic range, inelastic range,
maximum resisting moment, and post-maximum moment, the
histogram has a normal distribution with its bell shape. Figure
7 shows histograms for the resisting moment at different curva-
tures (4.00E-06, 8.20E-06, and 1.18E-05), which can be mod-
eled using a normal probability distribution with a mean/nomi-
nal ratio and COV as given in Figs. 5 and 6 respectively. The
strength moment distributions at curvatures 4.00E-06, 8.20E-
06, and 1.18E-05 correspond to elastic behavior, ultimate mo-
ment, and inelastic behavior, respectively, in the moment-cur-
vature relationship as shown in Fig. 8.

5. Conclusions

Structural reliability assessment of hull-girder bending of
ships requires the consideration of the following three aspects:
(1) structural strength, (2) loads, and (3) methods of reliabil-
ity analysis. A methodology based on the ultimate strength
of hull-girder bending was developed to assess the structural
reliability for ships. In this paper the structural reliability of
hull-girder bending of ships was assessed by considering its
strength parameters as random variables. It also demonstrates
that the structural reliability of hull-girder bending of ships can
be assessed with a non-closed performance function using ad-
vanced second moment (ASM) method or Monte Carlo simula-
tion (MCS) with variance reduction techniques. The method-
ology can be used to assess the reliability based on ultimate
strength and loads for hull-girder bending that are developed
individually as modules, and then combined into a non-closed
form of the performance function. The COV of ultimate
strength was determined to be 0.07. Based on this study, loads
for hull-girder bending also can be considered by generalizing
equation (33) in which loads are treated as functions of other
basic random variables.
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Fig. 8 Strength moment distribution at different curvatures
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