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ABSTRACT: Nondestructive ultrasonic testing is a more accurate alternative for
assessing the strength of timber piles than the conventional practice of visual in-
spection. However, because the ultrasonic method is relatively new, there is a need
to develop guidelines that can be used to define the spacing between test points
required for a desired level of accuracy in testing. Analyses of data obtained from
timber piles covering a range of compressive strengths were used to develop spac-
ing guidelines. The data base consisted of nine treated southern yellow pine timber
piles from four bridges in Maryland. Semivariogram modeling was used as the
statistical procedure for characterizing the stochastic properties of the ultrasonic
wave velocity measurements. Kriging is used to estimate the expected wave ve-
locity for points between measured values. The results provide a relationship be-
tween the relative accuracy and the relative spacing of point measurements. Con-
fidence intervals can be applied to assess the expected error variation between point
measurements. The methodology presented in the paper can also be utilized in the
nondestructive evaluation of other structural components.

INTRODUCTION

Federal and state legislation requires periodic inspection and evaluation of
highway and railroad bridges, including rating them as to their safe load-
carrying capacity. It has been pointed out that 35% of the nation’s highway
bridges were constructed before or during the 1930s (Galambos 1987) and
that almost three out of every ten are defective. Therefore, it is vital that
these bridges be effectively inspected in order to predict their remaining life
and to verify their structural integrity. One aspect of the problem is the ex-
istence of a large number of timber-piling-supported structures that are old
and deteriorating. Their periodic inspection is necessary to ensure the early
detection of possible damage or deterioration and to prevent structural fail-
ure. Inspection and assessment of structural integrity are also essential for
making economic assessments and decisions with regard to bridge replace-
ment or rehabilitation.

Despite a 1975 underwater inspection of the piling, an unanticipated fail-
ure occurred to a timber pile supported bridge at Denton, Maryland, in early
1976. The underwater inspection, which followed standard visual inspection
practices for that time period, had indicated reasonable soundness of the
timber, but subsequent laboratory tests of pilings from this bridge indicated
substantial reduction in material strength during the life of the piling. These
deficiencies went undetected by the visual inspection techniques used at that
time and were only determined after failure of the bridge. Since wood is a
biological material, it is subject to decay fungi, abrasion, insect attack, and
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other factors that cause a reduction in strength with the length of time in
service. Additionally, impact, fatigue, and overloading by traffic on bridges
may cause additional damage to the piles. Thus, bridge timber-pile structural
integrity and resistance to decay may decrease with time in service.

A research project supported by the Maryland State Highway Adminis-
tration and the Federal Highway Administration (FHWA) was conducted by
the University of Maryland. The main objective of the project was to develop
a nondestructive test for determining the in-place strength of bridge timber
piling above and below water. Piles such as those in the failed Denton Bridge
and others that are immersed in fresh water for long periods of time can
sustain damage to the wood microstructure, and a nondestructive test is the
most practical tool for determining the in-place strength. This type of dam-
age can reduce pile bearing capacity by actually changing material param-
eters, such as strength and density, without a loss of cross-sectional area.
In addition to developing the nondestructive testing technique, there is a need
to define the spacing requirements between test points along the -pile based
on a required level of accuracy. The main purpose of this paper is the de-
velopment of a statistical procedure to enable the engineer to make a decision
regarding the spacing requirements between test points in any nondestructive
testing of any material or structural member, for a specific degree of ac-
curacy. A systematic procedure that utilizes semivariogram modeling as the
statistical procedure for characterizing the stochastic properties of the ultra-
sonic measurements is provided herein. The procedure is used to develop
guidelines for defining spacing requirements for such measurements. These
guidelines should be applicable to any program for nondestructive testing of
other structural components.

BACKGROUND

Recently the ultrasonic testing was used in characterizing the material
properties of timber piles above and below water (Aggour 1986, 1987). The
velocity measurements of the ultrasonic testing were correlated with the strength
values from compression tests conducted on the same pile sections. Rela-
tionships were developed that can be used for establishing the in-place strength
of bridge timber piling. The wave propagation in the radial direction of the
timber piles was used, i.e., a direct transmission arrangement in which the
transducers were facing each other across the section of the pile being tested,
as shown in Fig. 1. Because the objective was to determine the strength of
the pile in service and because the strength is not uniform across the cross
section of the pile, measurements in the radial direction are more represen-
tative of the section tested. The direct arrangement also results in a maxi-
mum transfer of energy, as the transducers are highly directional and the
propagated pulses are mainly in the direction normal to the face of the trans-
ducers. The effective path length is well defined, being the distance between
the faces of the transducers. For this reason, the direct transmission mode,
with the transducers placed on opposite faces of the timber pile section, was
the configuration selected for the research project.

In the research program, an instrument was used to generate ultrasonic
pulses and to measure the corresponding time of travel of the propagated
pulses. Transmission and reception of the pulses is via two 54-kHz trans-
ducers placed firmly against the pile. A device for holding the transducers
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and measuring the pulse path length for above and below water measure-
ments has been developed (Aggour et al. 1984). Various combinations of
the following factors were considered in the research project: type of wood;
type of treatment; direction of the grain; density of the wood; degree of
decay; moisture content; and the effect of testing above and below the water
line. The results of the tests performed on both new and old section of piles
(piles in service) are presented in detail in (Aggour and Ragab 1982; Aggour
et al. 1984). It was shown (Aggour 1987) that the compressive strength of
a yellow pine timber pile can be predicted using a multivariable model that
regresses the compressive strength on both the wave velocity normal to the
grain of the pile and its unit weight. The empirical relationship that was
developed based on the results of these tests for the treated old sections is:

= 0.537 Vi + 6.34D oo (1)

where o, = the average compression strength in psi (1 psi = 6.89 kPa); V,
= wave velocity normal to the grain in ft/sec (1 ft/sec = 0.305 m/s); and
p = in-place unit weight in pcf (1 pcf = 0.157 kN/m?). Eq. 1 resulted in
a correlation coefficient (R) of 0.983, which corresponds to a 97% explained
variance. The first coefficient in this equation shows the sensitivity of the
model to the wave velocity across the section of the pile, while the second
coefficient shows the sensitivity of the model to the unit weight of the ma-
terial. The sections of the piles tested were moist, with a moisture content
close to the fiber saturation point (about 30 percent). For dry sections the
following model can be used:

Gor = 0.292 Viy + 46D « . oo @)

Eq. 2 resulted in a correlation coefficient of 0.933, or 87% of the variation
explained. The uses and limitations of these equations and others that are
suitable for different conditions are discussed in more detail in Aggour et
al. (1984, 1986).
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SEMIVARIOGRAM MODELING AND KRIGING ESTIMATION

In order to develop guidelines for the spacing requirements between test
points in the nondestructive testing, assumptions about the properties of the
structure must be made. For a structural member without decay we can as-
sume that the member is homogeneous. However, recognizing that the prop-
erties of the member vary on the micro level, the properties must be viewed
as random variables, with the value of a property assumed stationary over
the structural member. For timber piles subjected to nondestructive testing,
the cross-sectional dimensions will be small relative to the longitudinal di-
mension and the property being assessed by the nondestructive measuring
device will be averaged at a cross section. Therefore, the random variable
can be assumed to be one-dimensional, and the random variation along the
length of the member will be the only stochastic characteristic of interest.

Semivariogram analysis provides the tools for describing the stochastic
structure of a linearized random variable such as the properties of timber
piles (McCuen and Snyder 1986). Kriging estimation, which uses the results
of the semivariogram analysis as input, provides the means for making the
best linear unbiased estimates (BLUE) of the property. The combination of
semivariogram analysis and kriging estimation can then be used to describe
the stochastic structure of timber-pile properties so that guidelines for non-
destructive testing can be developed (McCuen and Snyder 1986).

Semivariogram Analysis

The property of a timber pile at any location x along the length of the pile
will be denoted as z(x). The same property has a value of z(x + h) at a
distance h from the initial point measured at x. For relatively small sepa-
ration distances, the values z(x) and z(x + h) will probably be autocorrelated;
for large separation distances, the autocorrelation will be zero, i.e., the val-
ues z(x) and z(x + k) will be independent. For very small A, the autocor-
relation should be large, and it should decrease to zero as k increases. At
some point, the value z(x) will be independent of z(x + h); this point is
called the range of influence and is denoted as r.

Of interest in assessing the stochastic structure of a property is the vari-
ability between the two values separated by distance h. The variogram, which
is denoted as 2+y(h), characterizes the variability of the property z between
the two points:
mﬁSanw?YQ?+x% ................................... 3)

n =
in which #n = the number of measurements made at separation distance A;
and x; = the location of a point with respect to some reference point. Eq.

3 has the form of the expected value and is actually the expected value of
the random variable [z(x) — z(x + W)]*

29(h) = E([z(x) — 2z + B)P) oo (4)

In order to quantify the variogram, realizations of the property must be avail-
able. A sample estimate of 2y(h) is denoted as 2%(h). In application of Eqs.
3 and 4, we assume that the intrinsic hypothesis is valid; this hypothesis
states that the value of the variogram depends only on the separation distance
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h and not the location x of the sample points (Journal and Huijbregts 1978).
In other words, Egs. 3 and 4 assume that the difference z(x) — z(x + h) is
a random variable with second-order stationarity.

Eqgs. 3 and 4 define the variogram. Dividing these values by 2 yields the
semivariogram (k). The semivariogram is used in the second phase of the
problem, i.e., the estimation problem with kriging. Just as probability func-
tions are fit using sample data that may be presented as a histogram, a sam-
ple semivariogram computed with Eq. 3 can be used to fit a semivariogram
function or model. The most frequently used semivariogram model is called
a spherical model and has the form:

y(h) = v, when k> r . (Sa)

v,| 3k n
——=—-1= whenh < r ... ... (5b)

2L r r

I

Y(h)

in which r = the range of influence; and y, = a semivariogram model pa-
rameter called the sill. v, is often quantified using the variance of the sample
measurements z(x). The spherical model is just one of many models used to
represent a semivariogram; it is widely used because its properties are easily
computed and it has the shape and scale properties that characterize many
data measurements.

Error Variance

The ultimate objective of the analysis problem is to provide a means of
estimating the property of the timber pile at any point x along its length. In
addition to the best estimate of the property, we must also be interested in
the accuracy of the estimate. If we have a value of the property z(x) mea-
sured at a single point x along the length of the pile, then assuming other
information is not available, our best estimate of the property at a point x
+ h is z(x). The variogram defines the accuracy of the estimate. That is, if
we have a single point estimate of the property z(x) at a point, then our best
estimate of the property at any other point x + h is z(x) and the accuracy
of z{(x + h) is the error variance 2vy(h). The standard error of estimate S,
would be the square root of the error variance.

If instead of a single point sample, we collect a sample of n measurements
along the length of the timber pile, then our best estimate of the property
would be a weighted mean value of the individual points:

in which w; = a weight for z(x;) that reflects the importance of measurement
z(x;). The error variance of z is no longer 2y(h) because the larger sample
size, i.e., n rather than 1, should be expected to reduce the error variance.
The reduction in the error variance depends on the number of points in the
sample and the relative independence of the sample points.

To develop an expression for the error variance when the sample consists
of n measurements, with each sample point having a weight w;, both the
error variance associated with each sample point and the point to be esti-
mated and the error variance among the sample points must be assessed.
The first source of the error variance would be the weighted average var-
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iogram value between sample point i and the point to be estimated, 2Zwyy(h),
where #; is the separation distance between sample point i and the point to
be estimated. As the sample size increases, the first part of the error variance
will decrease because of the greater level of confidence associated with larger
samples. Therefore, the within sample variation must be subtracted from the
point sample variation because it reflects variation that is not part of the total
error variation. The within sample variation is the weighted average semi-
variogram value between each point in the sample. Therefore, the error vari-
ance, S, is given by:

=2 M wiy(h) — M M wwy(hy) oo 7)

im1 i=1 j=1

in which h; = the separation distance between sample points i and j. The
second term on the right-hand side of Eq. 7 is the variance that is internal
to the sample points.

Estimation by Kriging

Semivariogram analysis is not an end in itself; it is intended to be used
as part of the estimation process. However, estimation requires us to decide
which of the sample points to use for estimation and what weight should be
given to each sample point. Given that the data analysis yields values for
the range of influence and sill for Eq. 5, it seems reasonable that only sample
points located within the range of influence of the unknown point should be
used to make estimates with Eq. 6, and the weight given to each sample
point should be inversely proportional to the ordinate of the semivariogram
corresponding to the distance separating the sample point and the unknown
point.

To formulate a solution, we need to satisfy the four requirements for sta-
tistical modeling: (1) An estimation model, which is given by Eq. 6; (2) an
objective function that defines “best” fit; (3) constraints, when necessary,
that place limitations on the solution; and (4) a data base. The data base
consists of the sample points z(x;), which are used with the linear estimation
model of Eq. 6. In statistical modeling, “best” is often taken to imply that
the error, or estimation, variance is a minimum. Thus, we have as the ob-
jective to minimize the error variance. But for the kriging solution, if we
want an unbiased model, we must impose the constraint that the sum of the
weights, w;, equals 1:

n

i=1

The resulting values of w; will thus be classed as “best linear unbiased es-
timators,” or BLUE.

It can be shown (McCuen and Snyder 1986) that the estimation variance,
which will be denoted as o and S> for the population and sample, respec-
tively, depends on the values of the unknown weights, the structure and
magnitude of the semivariogram, the location and magnitude of the sample
points, and the type of estimation to be made (i.e., point, core length, field,
or volumetric). We can minimize the error variance by taking derivatives of
the objective function with respect to each unknown and setting the deriv-
atives equal to zero; this provides a set of n equations with n unknowns.
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While the solution of these n “normal” equations would produce a minimum
error variance, the resulting model would not be unbiased. For this, the con-
straint of Eq. 8 must be included in the system of normal equations. Thus
the objective function is to minimize:

mw|>AM§v|_ ........................................... (9)

i=1

in which A = an unknown. It should be apparent that the solution procedure
for kriging is an example of Lagrangian optimization, with A being the La-
grangian multiplier. There are n + | unknowns (i.e., the n values of w; and
A), and there are n + 1 equations (i.e., Eq. 8 and the » derivatives of Eq.
9 with respect to each w,). Thus, we only need an expression for estimating
o? to find the solution.

To obtain a solution to the estimation of the value at a point, whether the
sample points are distributed linearly in either space or time, an estimate of
the error variance can be made by:

S2=2 3 wHSLY) = DO D ww(SHS) = YXLY) (10)

i=1 i=1 j=1

in which S; = the ith sample element; Y indicates the value of the criterion
variable, €.g., the wave velocity where the estimate is needed, and ¥(C;,C))
= the average semivariogram value between all combinations of C; and C,,
where C; and C; are dummy variables and may be either S, or Y. In Eq. 10,
S; and Y would represent the ith ultrasonic wave velocity measurement for
the sample and the unknown value of the wave velocity at any point along
the length of the timber pile. The summations of Eq. 10 include only the m
sample points within the range of influence since points beyond the range
of influence have w; = 0. Eq. 10 indicates that the error variance consists
of three parts. The first term represents the variation associated with differ-
ences between the sample point measurement S; and the criterion Y for which
a value is needed. The second term reflects the variation within the sample;
that is, the average semivariogram value for all elements of the sample. The
third term, i.e., ¥(Y,Y), reflects variation that is not error variation, so it
must be subtracted from the total expected variation between the sample and
the unknown value of the criterion. The third term is similar to the second
term in that it represents variation that is not error variation, yet it contributes
to the total variation between the sample elements and the unknown value
of the criterion. For a system in which there is a single point of interest,
the average semivariogram value for a separation distance of zero must also
be zero. The subtraction of the two terms indicates that we must reduce the
error variation because we are interested in a mean value (i.e., the mean of
all future estimates).

Having formulated the objective function (Eq. 10) the optimal values of
the w; and A can be obtained by Lagrangian optimization. The “normal”
equations are obtained by algebraic manipulation:

A F D WASHS) = VS Y) et (11a)
=1



Nt D WS S) = VS0 Y oo (11b)
=1

j=

Nt D WASHS) = FSm X)L (11c)

Jj=1

j=1
As an example, if the sample consists of three points, Eqs. 11a—d reduce
to:

N+ wiy(S,S) + way(S1, 82 + wa¥ (51,83 = ¥SLY) Lo (12a)
N+ wiY(S,, 8D + wa¥(S2,82) + wi(S52,53) = Y8, Y) (12b)
X+ w85, 8) + wa¥(S3,82) + wa¥(53,8:) = ¥(S85,Y) oo (12¢)
Wit Wy B ws = L (12d)

Eqs. 1la—d represent a set of n + 1 simultaneous equations with n + 1
unknowns, which can be solved either analytically or numerically. Hrm. SO-
lution provides the weights that yield the minimum error variance as defined

by Eq. 10.

DATA Base Usep IN THIS STtupy

For this paper, data were obtained from Aggour (1987) and Aggour and
Ragab (1982) where tests were conducted on yellow-pine m@oaoam WOE Uo?
new piles (purchased brand new for the experiments) and old piles A?_om. in
service). The velocity measurements were taken along the length of the pile.
At each cross section measured, two or three readings in different directions
(as shown in Fig. 1) were taken to enhance the reliability of the data.

Piles from four different bridges only were utilized in this paper. Some
of the piles were in good condition, while some piles were in a decayed
condition. The nine piles used in the analysis were: two piles from the _.Ums-
ton bridge at Denton, Maryland, in Caroline County; three piles from bridge
No. 9015 on Maryland Route 392 over Marshyhope Creek, Dorchester County;
one pile from bridge No. 0404 on Sandyfield Road, crossing Nine Pin Branch,
Worcester County; and finally three piles from the bridge on Smithville Road
in Dorchester County, Maryland. Measurements of wave velocity along H.:n
length of the piles were made in either one, two, or three directions, with
a total of 19 pile/direction combinations, as shown in Table 1.

SEMIVARIOGRAM ANALYSIS OF BRIDGE PILES

The velocity measurements for the nine timber piles were subjected to
semivariogram analyses. The analyses were conducted independently for
measurements in different directions through the piles; this yielded 19 sep-
arate estimates (pile/direction combinations) of the semivariogram param-
eters. Three of the nine piles were shown by compression strength tests to
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TABLE 1. Computed Semivariogram Parameters

Estimate of
Bridge Pile /direction Silt (ft/sec)? Range of influence (ft)

(1) (2) (3) (4)
Denton DB/1 51,000 1.5
DB/2 91,000 1.5

Denton DD/1 56,000 1.0
DD/2 83,000 1.0

DD/3 122,000 [.0

Sandyfield SB/1 380,000 1.5
SB/2 160,000 1.5

SB/3 249,000 1.5

Marshyhope MG/1 650,000 45
MG/2 700,000 4.5

Marshyhope M2/1 500,000 9.0
M2/2 970,000 7.5

Marshyhope M3/1 1,100,000 7.5
M3/2 970,000 7.0

Smithville UA/1 860,000 3.0
UA/2 720,000 2.0

Smithville UB/1 180,000 2.0
UB/2 780,000 3.0

Smithville uc/2 460,000 3.5

Note: 1 ft = 30.5 cm.

be in good condition in comparison to new piles, with the remaining six
piles shown to be in poor condition. The piles from Denton and Sandyfield
bridges were found to be in good condition, while the piles from Marshy-
hope and Smithville bridges were in poor condition. The resulting semiva-
riogram parameters are given in Table 1. The fitted semivariograms for four
of the 19 pile/direction combinations are shown in Fig. 2. The sample points
show a rising limb to a point approximately equal to the variance of the
points and then sample points that scatter about the sill. The approximations
are especially good considering the small number of points available for
estimating the semivariogram. The poorer fit shown in Figs. 2(a) and 2(b)
results from the smaller sample sizes and the presence of decay. For the
cleven pile/direction combinations for the piles with decayed wood fiber,
the mean sill and mean range of influence are 717,000 and 4.9 ft (1.49 m),
respectively; the corresponding values for the pile/direction combinations
for piles in good condition are 149,000 and 1.3 ft (0.4 m), respectively. The
larger sill for the defective piles results from the nonhomogeneity of the
compressive strength along the pile due to decay. This nonhomogeneity re-
sults in greater variation in the velocity measurements, with lower velocities
through the defective portions of the piles. The nonhomogeneity in strength
and, therefore, velocity is also responsible for the larger range of influence
for the defective piles. For the defective piles tested, the range of influence
was approximately twice the length of the region characterized by low ve-
locity measurements. The computed value of the sill increased as the dif-
ference between the velocities for the defective and good portions of the pile
increased.
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STAaTISTICAL CRITERIA FOR ESTABLISHING SPACING GUIDELINES

The data from the semivariogram analyses provides the basis for estab-
lishing spacing guidelines for nondestructive testing. To determine the crit-
ical mean value of the sill that distinguishes between good and defective
piles, a hypothesis test on the mean can be used. At this point, we are in-
terested in the mean value of the sill because it is this value that indicates
the separation between acceptable quality and decayed wood. In performing
such a test, there are two types of statistical errors that can occur. The type
I error is the case of rejecting the null hypothesis when, in fact, the null
hypothesis is true. The type II error is the case of accepting the null hy-
pothesis when, in fact, the null hypothesis is false. For our case, the null
hypothesis (Hy) is that the mean sill equals some value p,. The alternative
hypothesis is that the mean p. is statistically greater than j.,. The implication
of the type I error would be that the samples obtained during testing would
indicate that the null hypothesis of an acceptable mean should be rejected
when, in fact, the timber pile is not defective; this would lead to an economic
loss associated with replacing or restoration of the timber pile when it was
not actually necessary. The implication of the type II error is that the null
hypothesis of a safe structure would be accepted when, in fact, the pile is
probably defective; this would lead to the decision not to replace or restore
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FIG. 2. Fitted Semivariograms for Good and Defective Timber Piles: (a) Denton
Bridge, Pile DB, Direction 1; (b) Sandyfield Bridge, Pile SB, Direction 3; (c) Smith-
ville Bridge, Pile UC, Direction 2; and (d) Marshyhope Bridge, Pile M2, Direction
1 (Note: 1 ft = 30.5 cm)
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the pile when it should have been, which could result in failure. Clearly,
the type II error is more important than the type 1 error, and we would want
the probability of making a type Il error to be smaller than the probability
of making a type 1 error.

There are four variables in the decision to select the critical value of the
criterion. The sample size and the critical value are the two that are used in
the decision making. The probabilities of the type I and type II errors, which
are denoted as o and B, are the two statistical variables involved in the
decision. Thus, by setting « and f, the value of the criterion C, can be
determined. Assuming a normal distribution approximation to the mean value
of the sill, the values of « and 3 are given by:

a =P, > CJu = 717,000) = P L ST TIO00N (13)
113,500
Vn
and
B = PH, < Cjlp =717,000) = Pf z < E ............... a4)
113,500
Vn

If, for example, we assume values for a and B of 1% and 0.5%, respec-
tively, which are commonly used in statistical analysis, then solving Egs.
13 and 14 yields C, = 402,000.

Following the same procedure as before for the mean value of the range
of influence, a critical value C, can be determined. Using the mean values
of the range of influence for the good and defective piles of 1.31 ft (0.4 m)
and 4.86 ft (1.48 m) (see Table 1), with a standard deviation of 0.2588 ft
(0.079 m) from the data on good piles, we can relate the statistical param-
eters o and B to the physical parameters as follows:

a=PF>Clp=131)=P NVE ...................... (15)
0.2588
Vi
and
C, — 4.86
B=PH<Clu=486)=P Toasas | (16)
R

Assuming values of 1% and 0.5% for « and B, respectively, Eqs. 15 and
16 yields C, = 1.9 ft (0.58 m).

The statistical analysis has suggested that the criteria to be used to distin-
guish between semivariogram parameters of normal or structurally sound and
decayed piles are 400,000 and 1.9 ft (0.58 m) for the sill and range of
influence, respectively. In comparing these critical values with the sample
values (Table 1) obtained from the 19 pile/direction combinations, only one
of the 19 failed to meet these criteria. The velocities measured in direction
1 for pile UB (i.e., pile UB/1 in Table 1) from the Smithville bridge has
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a sill value (180,000). which was lower than the C,; however the limit on
the range of influence was exceeded, which indicates a decayed pile. From
reviewing the velocity measurements for pile UB/1, it was evident to the
writers that the low sill occurred because the decayed part was at the cap
of the pile rather than at the water line, which is where the decay was located
on the other decayed piles. The low velocity readings for the other decayed
piles were nearer the center of the pile, which is responsible for the larger
values of the sill.

ESTIMATION AND ACCURACY

The estimated value of the wave velocity at any point along the pile other
than at the location of the sample points can be obtained from Eq. 6. Eq.
10 is used to estimate the accuracy of the estimated value. The estimated
value is a function of the sample values within the range of influence and
the weights, which are a function of the semivariogram model and its pa-
rameters. The standard error is a function of the sample size and the model
parameters, -y, and r. Where the sample measurements are made with a con-
stant separation distance, Ak, two dimensionless parameters can be formed,
S./v. and Ah/r. The first dimensionless parameter is the ratio of two mea-
sures of variance, with S, representing the error variance and v, representing
the total variation of the variable. The second dimensionless ratio is the ratio
of two distances, with Ak representing the variation between the location of
the sample points and r the variation within which points influence the es-
timated value. Fig. 3 shows the value of the maximum value of §,./v, as a
function of Ah/r for a spherical semivariogram model; this figure was de-
rived by varying the two dimensionless parameters over a range of values
and computing the error at a point half way between the two sample points.
The error relative to the maximum is shown in Fig. 4, which shows the
standard error as a function of the location between two sample points sep-
arated by a distance Ak. The maximum error occurs at a point half way
between the two sample points, with the error decreasing from the maximum
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FIG. 3. Maximum Relative Error of Estimation (Se’/v,)...., for Spherical Semiva-
riogram as Function of Relative Spacing of Measurements, Ax/r
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FIG. 4. Relative Error of Estimation Se’/vy, between Sampling Points Separated
by Distance Ak as Function of Spacing Relative to Semivariogram Parameters

when a sample point is approached. When the ratio Ak/r equals 2.0, then
the point that is midway between the two sample points is located a distance
equal to the range of influence and thus the sample points do not influence
the center point, and S, is a maximum, V2y,.

The weights given to the individual sample points depend on the semi-
variogram model and the values of its parameters, the location along the
length of the timber pile, and the number of points within a range of influ-
ence of the point of interest along the pile. The weight at the location of a
sample point is one, with all other sample points equal to zero. For points
between sample points, the weight given to a sample point is inversely pro-
portional to the distance from the point of interest to the sample point.

The preceding concepts were applied to the bridge piles used to calibrate
the semivariogram model. Egs. 6 and 10 were used for Denton bridge pile
DD1 and Marshyhope bridge pile M3/1. The sample points were used with
the model parameters to compute the kriged estimates, which are shown in
Fig. 5. The variation between sample points is essentially linear. The stan-
dard errors, which are also shown in Fig. 5, were computed using Eq. 10
and the semivariogram model parameters of Table 1. The timber pile for
Denton bridge had a radius of influence of 1.0 ft (0.31 m), with sample
point measurements made at a spacing of 0.44 ft (0.13 m), which yields a
Ah/r ratio of 0.44. From Fig. 4, a maximum error ratio of S%/v, is 0.32,
which agrees with the computed values shown in Fig. 3. Because the timber
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FIG. 5. Kriged Estimates of Wave Velocity (V,) and 95% Lower Confidence In-
terval: Marshyhope Bridge Pile M3/1 (Note: 1 ft = 30.5 cm)

pile from Marshyhope bridge included a decayed wood fiber segment, it had
a relatively large range of influence of 7.5 ft (2.29 m). The sample point
measurements were made at a separation distance of 1.0 ft (0.31 m), which
gives a Ah/r ratio of 0.133. From Fig. 4, the maximum S2/7, ratio between
sample points is 0.14, which agrees with the values shown in Fig. 3.

The standard error is useful for establishing guidelines for sampling. Spe-
cifically, the standard error can be used to compute a confidence interval on
the value estimated by the kriging procedure. A confidence interval provides
a range of values in which the true value can be expected to lie. For the
case of nondestructive testing, a one-sided lower confidence interval would
indicate the probable lower limit of the true velocity, which could then be
used with Egs. 1 or 2 to place a lower limit expected in the compressive
strength. The width of the confidence interval will be a maximum at a point
half way between the sample points. While the estimated point gives the
expected (most likely) value of the velocity, the limit of the confidence in-
terval indicates just how much the true value can be expected to deviate
from the best estimate. If the confidence interval is wide, then we can as-
sume that the estimated value is not highly accurate, and the decision process
may differ from the case where the confidence interval is relatively narrow.

A normal approximation can be used to compute one-sided lower confi-
dence intervals on a kriged estimate of the velocity. Fig. 4 can be used to
find the ratio S./v, for any value of Ah/r and the location of the point be-
tween two points where the velocity was measured. The standard error can
then be computed using the computed value of the sill, v,, since we are only
interested in low velocities, the one-sided lower confidence interval is used;
an upper limit is not of primary interest since this would reflect strength
above the expected strength, while the lower limit on the expected strength
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would be the important decision criterion. The width of the interval would
depend on the level of confidence desired, the kriged estimate of the velocity
at the point of interest, and the computed standard error.

A one-sided lower 95% confidence interval was computed for the Mar-
shyhope bridge pile M3/1. The interval and the kriged estimates are shown
in Fig. 5 for all points along the length of the pile. The unequal spacing of
the sample measurements produces a standard error that varies over the length
of the pile. For example, between the pile depths of 7.5-9.75 and 9.75—
11.25 the kriged estimate does not show much variation; however, the stan-
dard error at the center of the first interval is much greater than the standard
error at the center of the second interval because the spacing of the points
is wider. This is evident from the confidence interval shown in Fig. 5. Sim-
ilarly, the maximum limit in the confidence interval between pile depths of
1.75—-4.5 is lower than for the interval between depths of 4.5-6.0 even though
the kriged estimate at a depth of 3.12 ft (0.95 m) is higher than that at a
depth of 5.25 ft (1.6 m). The wider confidence. interval reflects the greater
uncertainty associated with the wider spacing between sample points.

The confidence interval provides for the assessment of the accuracy of the
kriged estimates. The 95% confidence shows the lower limit above which
we can be 95% certain that the true value of V, lies. For the decayed part
of timber pile M3 from the Marshyhope bridge, which lies between the dis-
tances 7.5 ft (2.29 m) and 11.25 ft (3.43 m) from the top of the pile, the
kriged estimates of V, were about 3,500. However, the true value for the
unsampled parts of the pile that lie between the sampled points may be as
low as 2,350. The confidence limit suggests that the compressive strength
between sample points may actually be lower than that suggested by the
measured values of V,. Such variation can be important in making decisions
about the action to be taken when nondestructive testing measurements sug-
gest marginal or inadequate strength. The confidence limit is also useful in
establishing guidelines for nondestructive testing.

GUIDELINES FOR TEST POINT SPACING

There are two elements in establishing guidelines for test point spacing in
nondestructive testing of timber piles. First, the minimum point strength must
be established; this should be based on the requirements of the structural
element in question. The minimum strength required can be transformed into
a velocity V, using the relationships between the compressive strength and
the velocity V, (Eqs. 1 and 2). However, the velocity obtained from Eqs. 1
or 2 is the mean value expected at a sampling point. The regression line
does not reflect either the sampling variation of the computed relationship
at the location of a sample point or the variation that can be expected at
points located along a timber pile between point measurements. The first
source of variation, i.e., sampling error, is expected to be relatively small
compared with the error variation between sample points; this is true because
Eqs. 1 and 2 explained a large portion of the total variation, with R? values
of 97 and 87%, respectively. However, the second source of variation should
not be neglected in establishing sampling guidelines.

The second element of the sampling program is to decide on the number
of points to be sampled and the spacing of the points. If a timber pile is
assumed to be homogeneous in strength along the length of the pile, then
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the optimum sampling plan would provide the minimum expected error. Since
a nonhomogeneous pile is easier to detect because of the larger variance in
the measurements, then the spacing established using the assumption of ho-
mogeneity will actually be conservative, with.decay more likely to be de-
tected. The second requirement in deciding on a sampling program is to
specify the number of points. This decision depends on the assumed semi-
variogram model and the required accuracy. As indicated in the discussion
of Fig. 5, the accuracy, which is suggested by the width of the confidence
interval, improves as the spacing of the points is decreased. For a spherical
semivariogram, Fig. 4 can be used to indicate the relative change in accuracy
as the spacing of the V, measurements is changed. By setting the value of
relative error, S./7,, the spacing ratio, Ah/r, can be obtained. Unless site
specific values of the semivariogram parameters v, and r are available, the
critical values C, and C, of 400,000 and 1.9 ft (0.58 m) can be used for Y,
and r, respectively. For example, if a relative accuracy of 50% is required,
ie., (S./y,) = 0.5, at the centerline between measurements, then Fig. 4
can be entered with a value of S./vy, = 0.7, which yields a value for Ah/r
of 1.0; this would yield a spacing of 1.9 ft (0.58 m) if the value of C, is
used for r. For a relative accuracy of 80%, then (S./v,)* = 20% (or 0.2)
and S,/y, = 0.45. Fig. 4 yields a value of Ah/r of 0.65, which corresponds
to a spacing of 1.2 ft (0.37 m). If there were restrictions, either physical or
cost related, on the number of sample measurements that could be taken,
then the relative accuracy of the kriged estimates along the length of the
timber pile could be evaluated using Fig. 4.

In establishing the lower limit of V, that is considered acceptable, the
value obtained from Eqs. 1 or 2 represents the mean value rather than an
expected lower limit. The confidence interval approach could be used to
establish the critical value of V, that is used to decide whether or not to
provide restoration. This would require setting the lower limit of the
compression strength o, and using Egs. 1 or 2 to estimate the corresponding
value of V,, which is denoted as V,;; this value of V, would represent the
confidence interval value. The value to be used for decision making could
then be computed by:

Vo = Vol b 28 a7

in which V,; = the lower 95% confidence interval value obtained ‘with the
minimum compressive strength; z = the standard normal deviate for a 95%
level of confidence, and S, = the standard error. The resulting value V,
should be used to decide whether or not to provide restoration of the pile.
Using the confidence interval approach rather than the mean value provides
assurance that the expected strength between the sample point measurements
is adequate.

SuMMARY AND CONCLUSION

Nondestructive testing techniques are being used increasingly for the eval-
uation of the strength of timber piles. Ultrasonic testing is a more accurate
and less costly alternative to the conventional practice of visual inspection.
Because of the cost and time required to perform such tests, minimizing the
number of measurements to be made in order to obtain a specified degree
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of accuracy is of importance. This paper provides a methodology for such
a determination.

Analyses of data obtained from testing timber piles, which included both
decayed piles and piles in good condition, thus covering a wide range of
compressive strengths, were used to develop spacing guidelines. The data
base consisted of yellow pine timber piles from four bridges in the state of
Maryland. Two of the bridges had piles with wood decay while the piles
from the other two bridges were structurally sound. The ultrasonic testing
measurements were analyzed using semivariogram analysis, with a spherical
semivariogram calibrated to represent the stochastic character of the ultra-
sonic wave velocity. The results of the semivariogram analyses provide a
relationship between the relative accuracy and the relative spacing of point
measurements of the wave velocity. Confidence intervals that reflect the sto-
chastic character of the wave velocity, and therefore the compressive strength,
can be applied to account for between-point error variation. Therefore, the
spacing guidelines provided can ensure the specified level of accuracy of the
estimate of the strength of timber piles even at points where measurements
are not made. Semivariogram modeling, the statistical procedure for char-
acterizing the stochastic properties, can also be used for providing spacing
guidelines for the nondestructive evaluation of other structural components.

A number of statistical approaches could have been applied in developing
sampling guidelines. Semivariogram analysis and kriging estimation are the
most appropriate tools because of the importance of the stochastic properties
of a timber pile. Even a new timber pile will have nonconstant structural
properties along its length, and as the pile ages and is subject to weathering,
as well as dynamic loading conditions, the variation of the structural prop-
erties will probably increase. Thus, establishing spacing guidelines requires
a method, such as semivariogram analysis, that can characterize the sto-
chastic variation of the strength of timber piles as a function of the distance
between sample points.
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