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Abstract

Engineers and scientists are increasingly required to design, test, and validate new complex systems in simulation environments and/or

with limited experimental results due to international and/or budgetary restrictions. Dealing with complex systems requires assessing

knowledge and information by critically evaluating them in terms relevance, completeness, non-distortion, coherence, and other key

measures. Using the concepts and definitions from evolutionary knowledge and epistemology, ignorance is examined and classified in the

paper. Two ignorance states for a knowledge agent are identified: (1) non-reflective (or blind) state, i.e. the person does not know of self-

ignorance, a case of ignorance of ignorance; and (2) reflective state, i.e. the person knows and recognizes self-ignorance. Ignorance can be

viewed to have a hierarchal classification based on its sources and nature as provided in the paper. The paper also explores limits on

knowledge construction, closed and open world assumptions, and fundamentals of evidential reasoning using belief revision and diagnostics

within the framework of ignorance analysis for knowledge construction. The paper also examines an algebraic problem set as identified by

Sandia National Laboratories to be a basic building block for uncertainty propagation in computational mechanics. Solution algorithms are

provided for the problem set for various assumptions about the state of knowledge about its parameters.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Engineers and scientists are increasingly required to

design, test, and validate new complex systems in

simulation environments and/or with limited experimental

results due to international and/or budgetary restrictions.

Examples include space missions, certifications of missile

stockpiles, and economic forecasting. These new trends

require new practices of rigorous analyses of knowledge,

information, uncertainty, and ignorance. This paper deals

with knowledge construction by emphasizing both available

information and ignorance. Knowledge can be constructed

based on ignorance analysis. Ignorance analysis for

knowledge construction ensures that our models and

simulations do not assume and utilize implicitly or blindly

more information than what is available, and accounts for

confusion and conflict in available information.

This paper proposes a breakdown of ignorance within a

knowledge philosophical framework. The breakdown

provides a meaningful context for modeling and analyzing

complex systems. This ignorance construct is discussed,

and some suitable analytical methods for modeling

ignorance components are briefly described in this paper.

The paper also examines an algebraic problem set as

identified by Sandia National Laboratories to be a basic

building block for uncertainty propagation in computational

mechanics [15]. Solution algorithms are provided for the

problem set for various assumptions about the state of

knowledge about its parameters.

2. Knowledge and ignorance

Systems of the future will require engineers to design

them, test their performances, and assess their robustness and

vulnerability in a simulated environment. Simulation

requires validated building blocks for materials behavior,

physical laws, environment – system interaction, unit

performance, and system performance. At every level and

stage of the simulation process, verification and validation

are needed that should include ignorance analysis, and

uncertainty analysis and modeling. Example systems include

our nuclear weapon stockpile, space stations, satellites, space

missions, etc. The processes of qualification, verification and

validation are shown in Fig. 1. The verification process
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consists of three stages: conceptual model verification,

design verification, and code verification. The verification

can be done by comparison and test of agreement between the

computational model and solution, and results from bench-

mark (analytical or very accurate numerical solutions) of

simplified model problems. The validation consists of two

stages: conceptual model validation, and results validation

that can be done by expert opinion solicitation [3].

Generally, engineers and scientists, and even almost most

humans, tend to focus on what is known and not on the

unknowns. Even the English language lends itself for this

emphasis. For example, we can easily state that Expert A

informed Expert B, whereas we cannot directly state the

contrary. We can only state it by using the negation of the

earlier statement in the form of “Expert A did not inform

Expert B”. Statements such as “Expert A misinformed Expert

B”, or “Expert A ignored Expert B” do not convey the same

(intended) meaning. Another example is “John knows

David”, for which a meaningful direct contrary statement

does not exist. The emphasis on knowledge and not on

ignorance can also be noted in sociology by having a field of

study called the sociology of knowledge and not having

sociology of ignorance, although Weinstein and Weinstein

[27] introduced the sociology of non-knowledge, and

Smithson [23] introduced the theory of ignorance only in

the last two decades.

Engineers and scientists tend to emphasize knowledge

and information, and sometimes intentionally or

unintentionally brush aside ignorance. In addition, infor-

mation (or knowledge) can be misleading in some situations

because it does not have the truth content that was assigned

to it leading potentially to overconfidence. In general,

knowledge and ignorance can be classified as shown in

Fig. 2 using squares with crisp boundaries for the purpose of

illustration. The shapes and boundaries can be made

multi-dimensional, irregular and/or fuzzy. The evolutionary

Fig. 2. Human knowledge and ignorance [3].

Fig. 1. Qualification, verification and validation [2].
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infallible knowledge (EIK) about a system is shown as the

top-right square in the figure, and can be intrinsically

unattainable due to the fallacy of humans and

the evolutionary nature of knowledge. The state of reliable

knowledge (RK) is shown using another square, i.e. the

bottom left square, for illustration purpose. The RK

represents the present state of knowledge in an evolutionary

process, i.e. a snapshot of knowledge as a set of know-how,

object and prepositions that meet justifiable true beliefs

(JTB) within reasonable reliability levels. At any stage of

human knowledge development, this knowledge base

about the system is a mixture of truth and fallacy. The

intersection of EIK and RK represents the knowledge base

with the infallible knowledge (IK) components

(i.e. know-how, objects, and propositions). Therefore, the

following relationship can be stated using the notations of

set theory as:

Infallible Knowledge ðIKÞ ¼ ðEIKÞ> ðRKÞ ð1Þ

where > means intersection. IK is defined as knowledge

that can survive the dialectic processes developing among

humans and in societies, and passes the test of time and use.

It constitutes known possible propositions. This IK can be

schematically defined by the intersection of these two

squares of EIK and RK. Based on this representation, two

primary types of ignorance can be identified: (1) ignorance

within the knowledge base RK due to factors such as

irrelevance, and (2) ignorance outside the knowledge base

due to unknown or unknowable objects, interactions, laws,

dynamics, and know-how.

An Expert A of some knowledge about a system of

interest can be represented as shown in Fig. 2 using ellipses

for illustrative purposes. Three types of ellipses can be

identified, shown concentric in the figure but can be

eccentric: (1) a subset of the EIK that the expert has

learned, captured and/or created, (2) self-perceived

knowledge by the expert, and (3) perception by others of

the expert’s knowledge. The EIK of the expert might be

smaller than the knowledge self-perceived by the expert,

and the difference between the two types is a measure of

overconfidence that can be partially related to the expert’s

ego. Ideally, the three ellipses should be the same,

but commonly they are not. They are greatly affected by

communication skills of experts and their successes in

dialectic processes that with time might lead to evolutionary

knowledge marginal advances or quantum leaps; hence the

importance of language and linguistics as the primary

medium of knowledge archival for humans. Also, their

relative sizes and positions within the IK base are unknown.

It can be noted from Fig. 2 that the expert’s knowledge can

extend beyond the RK base into the EIK area as a result of

creativity and imagination of the expert. Therefore, the

intersection of the expert’s knowledge with the

ignorance space outside the knowledge base can be viewed

as a measure of creativity and imagination. Another expert

(i.e. Expert B) would have her/his own ellipses that might

overlap with the ellipses of Expert A, and might overlap

with other regions by varying magnitudes. Knowledge

sources can be identified as shown in Fig. 3.

Using the concepts and definitions from evolutionary

knowledge and epistemology, ignorance is classified based

on knowledge sources and by sources as described in detail

in Section 3. This classification is needed in order to

understand and define the limits of our knowledge about a

problem, and to appropriately use applicable modeling

theory of ignorance.

3. Classification of ignorance

The state of ignorance for a person or society can be

unintentional or deliberate due to an erroneous cognition

state and not knowing relevant information, or ignoring

information and deliberate inattention to something for

various reasons such as limited resources or cultural

opposition, respectively. The latter type is a state of

conscious ignorance which is not intentional, and once

recognized evolutionary species try to correct for that state for

survival reasons with varying levels of success. The former

ignorance type belongs to the blind ignorance category.

Therefore, ignoring means that someone can either uncon-

sciously or deliberately refuse to acknowledge or regard, or

leave out an account or consideration for relevant infor-

mation [7]. These two states should be treated in developing a

hierarchal breakdown of ignorance.

Using the concepts and definitions from evolutionary

knowledge and epistemology, ignorance can be classified

based on the three knowledge sources as follows:

† Know-how ignorance: It can be related to the lack of, or

having erroneous know-how knowledge. Know-how

knowledge requires someone to know how to do a

specific activity, function, procedure, etc. such as, riding

a bicycle.

† Object ignorance: It can be related to the lack of, or

having erroneous object knowledge. Object knowledge is

based on a direct acquaintance with a person, place or

thing, for example, Mr Smith knows the President of the

United States.

† Propositional ignorance: It can be related to the lack of,

or having erroneous propositional knowledge.

Propositional knowledge is based on propositions that

can be either true or false, for example, Mr Smith knows

that the Rockies are in North America.

The above three ignorance types can be cross-classified

against two possible states for a knowledge agent, such as a

person, of being aware or unaware of their state of

ignorance. These two states are

† Non-reflective (or blind) state: The person does not know

of self-ignorance, a case of ignorance of ignorance.
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† Reflective state: The person knows and recognizes

self-ignorance. Smithson (1985) termed this type of

ignorance conscious ignorance, and the blind ignorance

was termed meta-ignorance. As a result, in some cases

the person might formulate a proposition but still be

ignorant of the existence of a proof or disproof.

A knowledge agent’s response to reflective ignorance

can be either passive acceptance or a guided attempt to

remedy one’s ignorance that can lead four possible

outcomes: (1) a successful remedy that is recognized by

the knowledge agent to be a success leading to

fulfillment, (2) a successful remedy that is not recognized

by the knowledge agent to be a success leading to

searching for a new remedy, (3) a failed remedy that is

recognized by the knowledge agent to be a failure

leading to searching for a new remedy, and (4) a failed

remedy that is recognized by the knowledge agent to be a

success leading to blind ignorance, such as ignoratio

elenchi (i.e. ignorance of refutation or missing the point

or irrelevant conclusion).

The reflective state has a survival value to evolutionary

species; otherwise it can be argued that it never would have

flourished [6]. Ignorance emerges as a lack of knowledge

relative to a particular perspective from which such gaps

emerge. Accordingly, the accumulation of beliefs and

the emergence of ignorance constitute a dynamic process

resulting in old ideas perishing and new ones flourishing [4].

According to Bouissac [4], the process of scientific

discovery can be metaphorically described as not only a

cumulative sum (positivism) of beliefs, but also an activity

geared towards relentless construction of ignorance

(negativism), producing architecture of holes, gaps, and

lacunae so to speak.

Hallden [11] examined the concept of evolutionary

ignorance in decision theoretic terms. He introduced the

notion of gambling to deal with blind ignorance or lack of

knowledge according to which there are times when,

in lacking knowledge, gambles must to be taken. Sometimes

gambles pay off with success, i.e. continued survival, and

sometimes they do not lead to sickness or death.

According to evolutionary epistemology, ignorance has

factitious, i.e. human-made, perspectives. Smithson [24]

provided a working definition of ignorance based on

“Expert A is ignorant from B’s viewpoint, if A fails to

agree with or show awareness of ideas which B defines as

actually or potentially valid”. This definition allows for

self-attributed ignorance, and either Expert A or B can be

attributer or perpetrator of ignorance. Our ignorance and

claimed knowledge depend on our current historical setting

which is relative to various natural and cultural factors such

as language, logical systems, technologies and standards

which have developed and evolved over time.

Therefore, humans evolved from blind ignorance through

gambles to a state of incomplete knowledge with reflective

ignorance recognized through factitious perspectives.

Fig. 3. Knowledge types, objects, and sources [3].
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In many scientific fields, the level of reflective ignorance

becomes larger as the level of knowledge increases.

Duncan and Weston-Smith [9] stated in the Encyclopedia

of Ignorance that compared to our bond of knowledge,

our ignorance remains Atlantic. They invited scientists to

state what they would like to know in their respective fields,

and noted that the more eminent they were the more

readily and generously they described their ignorance.

Clearly, before solving a problem, it needs to be articulated.

Ignorance can be viewed to have a hierarchal

classification based on its sources and nature as shown in

Fig. 3 with the brief definitions provided in Table 1.

Ignorance can be classified into two types, blind ignorance

(also called meta-ignorance), and conscious ignorance

(also called reflective ignorance). Blind ignorance includes

not knowing relevant know-how, objects-related

information, and relevant propositions that can be justified.

The unknowable knowledge can be defined as knowledge

that cannot be attained by humans based on current

evolutionary progressions, or cannot be attained at all due

to human limitations, or can only be attained through

quantum leaps by humans. Blind ignorance also includes

irrelevant knowledge that can be of two types: (1) relevant

knowledge that is dismissed as irrelevant or ignored, and

(2) irrelevant knowledge that is believed to be relevant

through non-reliable or weak justification or as a result of

ignoratio elenchi. The irrelevance type can be due to

untopicality, taboo, and undecidability. Untopicality can be

attributed to intuitions of experts that could not be

negotiated with others in terms of cognitive relevance.

Taboo is due to socially reinforced irrelevance. Issues that

people must not know, deal with, inquire about, or

investigate define the domain of taboo. The undecidability

type deals with issues that cannot be designated true or false

because they are considered insoluble, or solutions that are

not verifiable, or as a result of ignoratio elenchi. A third

component of blind ignorance is fallacy that can be defined

as erroneous beliefs due to misleading notions.

Kurt Gödel (1906–1978) showed that a logical system

could not be both consistent and complete; and could not

prove itself complete without proving itself inconsistent and

vise versa. Also, he showed that there are problems that

cannot be solved by any set of rules or procedures; instead

for these problems one must always extend the set of

Table 1

Taxonomy of ignorance [3]

Term Meaning

1. Blind ignorance Ignorance of self-ignorance or called meta-ignorance

1.1. Unknowable Knowledge that cannot be attained by humans based on current evolutionary progressions,

or cannot be attained at all due to human limitations,

or can only be attained through quantum leaps by humans

1.2. Irrelevance Ignoring something

1.2.1. Untopicality Intuitions of experts that could not be negotiated with others in terms of cognitive relevance

1.2.2. Taboo Socially reinforced irrelevance. Issues that people must not know, deal with, inquire about, or

investigate

1.2.3. Undecidability Issues that cannot be designated true or false because they are considered insoluble, or

solutions that are not verifiable, or ignoratio elenchi

1.3. Fallacy Erroneous beliefs due to misleading notions

2. Conscious ignorance A recognized self-ignorance through reflection

2.1. Inconsistency Inconsistency in knowledge can be attributed to distorted information as a result of inaccuracy,

conflict, contradiction, and/or confusion

2.1.1. Confusion Wrongful substitutions

2.1.2. Conflict Conflicting or contradictory assignments or substitutions

2.1.3. Inaccuracy Bias and distortion in degree

2.2. Incompleteness Incomplete knowledge due to absence or uncertainty

2.2.1. Absence Incompleteness in kind

2.2.2. Unknowns The difference between the becoming knowledge state and current knowledge state

2.2.3. Uncertainty Knowledge incompleteness due to inherent deficiencies with acquired knowledge

2.2.3.1. Ambiguity The possibility of having multi-outcomes for processes or systems

(a) Unspecificity Outcomes or assignments that are not completely defined

(b) Non-specificity Outcomes or assignments that are improperly defined

2.2.3.2. Approximations A process that involves the use of vague semantics in language,

approximate reasoning, and dealing with complexity by emphasizing relevance

(a) Vagueness Non-crispness of belonging and non-belonging of elements to a set or a notion of interest

(b) Coarseness Approximating a crisp set by subsets of an underlying partition of the set’s universe that would

bound the set of interest

(c) Simplifications Assumptions needed to make problems and solutions tractable

2.2.3.3. Likelihood Defined by its components of randomness, statistical and modeling

(a) Randomness Non-predictability of outcomes

(b) Sampling Samples versus populations
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axioms. This philosophical view of logic can be used as a

basis for classifying the conscious ignorance into two

primary branches of inconsistency and incompleteness.

Inconsistency in knowledge can be attributed to distorted

information as a result of inaccuracy, conflict, contradiction,

and/or confusion as shown in Fig. 4. Inconsistency can

result from assignments and substitutions that are wrong,

conflicting or biased producing confusion, conflict or

inaccuracy, respectively. The confusion and conflict results

from an in-kind inconsistent assignments and substitutions;

whereas inaccuracy results from a level bias or error in these

assignments and substitutions.

Incompleteness is defined as incomplete knowledge, and

can be considered to consist of (1) absence and unknowns as

incompleteness in kind, and (2) uncertainty. The unknowns

or unknown knowledge can be viewed in evolutionary

epistemology as the difference between the becoming

knowledge state and current knowledge state. The

knowledge absence component can lead to one of the

scenarios: (1) no action and working without the knowledge,

(2) unintentionally acquiring irrelevant knowledge leading

to blind ignorance, (3) acquiring relevant knowledge that

can be with various uncertainties and levels. The fourth

possible scenario of deliberately acquiring irrelevant

knowledge is not listed since it is not realistic.

Uncertainty can be defined as knowledge incompleteness

due to inherent deficiencies with acquired knowledge.

Uncertainty can be classified based on its sources into

three types: ambiguity, approximations, and likelihood.

The ambiguity comes from the possibility of having

multi-outcomes for processes or systems. Recognition

some of the possible outcomes creates uncertainty.

The recognized outcomes might constitute only a partial

list of all possible outcomes leading to unspecificity. In this

context, unspecificity results from outcomes or assignments

that are not completely defined. The incorrect definition of

outcomes, i.e. errors in defining outcomes, can be called

non-specificity. In this context, non-specificity results

from outcomes or assignments that are improperly defined.

The unspecificity is a form of knowledge absence and can be

treated similar to the absence category under

incompleteness. The non-specificity can be viewed as a

state of blind ignorance.

The human mind has the ability to perform

approximations through reduction and generalizations,

i.e. induction and deduction, respectively, in developing

knowledge. The process of approximation can involve the

use of vague semantics in language, approximate reasoning,

and dealing with complexity by emphasizing relevance.

Approximations can be viewed to include vagueness,

coarseness and simplification. Vagueness results from the

non-crisp nature of belonging and non-belonging of

elements to a set or a notion of interest; whereas coarseness

results from approximating a crisp set by subsets of an

underlying partition of the set’s universe that would bound

the crisp set of interest. Simplifications are assumptions

made to make problems and solutions tractable.

The likelihood can be defined in the context of chance,

odds and gambling. Likelihood has primary components of

randomness and sampling. Randomness stems from the

non-predictability of outcomes. Engineers and scientists

commonly use samples to characterize populations, hence

the last type. The ignorance hierarchy of Fig. 4 shows that

our knowledge shall be limited by our conscious ignorance

and bounded by our blind ignorance.

4. Construction of knowledge

Decision situations commonly require constructing

knowledge from information. Knowledge construction

starts with data collection and information gathering that

Fig. 4. Ignorance hierarchy [3].
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can include various sources and formats as identified in

Fig. 3. Ignorance types need to be identified, and their levels

should be assessed in order to quantify and qualify their

contribution to modeling the decision situation. Klir and

Wierman [13] provide analytical methods that can be used

for modeling various ignorance types and assessing their

magnitudes or levels. Also, uncertainty measures are

provided to assess magnitudes or levels of uncertainty.

These uncertainty measures can be defined to be non-

negative real numbers, and should be inversely proportional

to the strength and consistency in evidence as expressed in

the theory employed, i.e. the stronger and more consistent

the evidence, the smaller the amount of uncertainty [1,3,13].

Such uncertainty measures can be constructed to assess

collected information, such as opinions rendered by one

expert on some issue of interest, or opinions rendered by

several experts on the same issue, or collected data and

information.

Ignorance models, uncertainty measures and data

collected can be entered into a systematic process to

construct knowledge. This knowledge-construction process

must have a dialectic nature as schematically demonstrated

in Fig. 5 [3]. Information can be defined as sensed objects,

things, places, processes, and information and knowledge

communicated by language and multimedia. Information

can be viewed as a pre-processed input to our intellect

system of cognition, and knowledge acquisition and

creation. Information can lead to knowledge through

investigation, study, and reflection. However, knowledge

and information about the system might not constitute the

eventual evolutionary knowledge state about the system as a

result of not meeting the justification condition in JTB or

the ongoing evolutionary process or both. Knowledge is

defined in the context of the humankind, evolution,

language and communication methods, and social and

economic dialectic processes; and cannot be removed from

them. As a result, knowledge would always reflect the

imperfect and evolutionary nature of humans that can be

attributed to their reliance on their senses for information

acquisition; their dialectic processes; and their mind for

extrapolation, creativity, reflection and imagination with

associated biases as a result of preconceived notions due to

time asymmetry, specialization and other factors. An

important dimension in defining the state of knowledge

and truth about a system is non-knowledge or ignorance.

Opinions rendered by experts, that are based on

information and exiting knowledge, can be defined as

preliminary propositions with claims that are not fully

justified or justified with adequate reliability but are not

necessarily infallible. Expert opinions are seeds of

propositional knowledge that do not meet one or more of

the conditions required for the JTB with the reliability

theory of knowledge. They are valuable as they might lead

to knowledge expansion, but decisions made based on

them sometimes might be risky propositions since their

preliminary nature might lead to proving them false by

others or in the future.

The relationships among knowledge, information,

opinions, and evolutionary epistemology are schematically

shown in Fig. 5. The dialectic processes include

communication methods such as languages, visual and audio

formats, and other forms. Also, they include economic, class,

schools of thought, political and social dialectic processes

within peers, groups, colonies, societies, and the world.

Fig. 5. Knowledge, information, opinions, and evolutionary epistemology [3].
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4.1. Limits on knowledge construction

Complex decision situations can challenge human ability

to construct knowledge from information. Humans as

complex, intelligent systems have the ability to anticipate

the future, and learn and adapt in ways that are not yet fully

understood. Engineers and scientists, who study or design

systems, have to deal with complexity more often than ever;

hence the interest in the field of complexity. The study of

complexity led to developing theories, such as chaos and

catastrophe theories. Even if complexity theories would not

produce solutions to problems, they can still help us to

understand complex systems and perhaps direct

experimental studies. Theory and experiment go hand in

glove, therefore providing opportunities to make major

contributions.

Complexity can be classified into two broad categories

[25]: (1) complexity with structure, (2) complexity without

structure. The complexity with structure was termed

organized complexity [26]. Organized complexity can be

observed in a system that involve non-linear differential

equations with a lot of interactions among a large number of

components and variables that define the system, such as in

life, behavioral, social and environmental sciences.

Such systems are usually non-deterministic in their nature.

Problem solutions related to such models of organized

complexity tend to converge to statistically meaningful

averages [13]. Advancements in computer technology and

numerical methods have enhanced our ability to obtain such

solutions effectively and inexpensively. As a result,

engineers design complex systems in simulated

environments and operations, such as a space mission to a

distant planet, and scientists can conduct numerical

experiments involving, for example, nuclear blasts. In the

area of simulation-based design, engineers are using parallel

computing and physics-based modeling to simulate fire

propagation in engineering systems, or the turbulent flow of

a jet engine using molecular motion and modeling.

These computer and numerical advancement are not

limitless, as the increasing computational requirements

lead to what is termed transcomputational problems capped

by the Bremermann’s limit [5]. The nature of such

transcomputational problems is studied by the theory of

computational complexity [10]. The Bremermann’s limit

was estimated based on quantum theory using the following

proposition [5]:

“No data processing systems, whether artificial or living,

can process more than 2 £ 1047 bits per second per gram

of its mass,”where data processing is defined as transmit-

ting bits over one or several of a system’s channels. Klir

and Folger [12] provide additional information on the

theoretical basis for this proposition showing that the

maximum processing value to be 1.36 £ 1047 bits per

second per gram of its mass. Considering a hypothetical

computer that has the entire mass of the Earth operating

for a time period equals to an estimated age of the Earth,

i.e. 6 £ 1027 g and 1010 years, respectively, with each year

containing 3.15 £ 107 s, this imaginary computer would

be able to process 2.57 £ 1092 bits, or rounded to the

nearest power of ten, 1093 bits, defining the Bremer-

mann’s limit. Many scientific and engineering problems

defined with a lot of details can exceed this limit. Klir and

Folger [12] provide the examples of pattern recognition

and human vision that can easily reach transcompu-

tational levels. In pattern recognition, consider a square

q £ q spatial array defining n ¼ q2 cells that partition the

recognition space. Pattern recognition often involves

color. Using k colors, as an example, the number of

possible color patterns within the space is kn: In order to

stay within the Bremermann’s limit, the following

inequality must be met:

kn # 1093 ð2aÞ

Fig. 6 shows a plot of this inequality for values of

k ¼ 2–10 colors. For example using only two colors, a

transcomputational state is reached at q . 18 colors.

These computations in pattern recognition can be directly

related to human vision and the complexity associated

with processing information by the retina of a human eye.

If we consider a retina of about one million cells with each

cell having only two states of active and inactive in

recognizing an object, modeling the retina in its entirety

would require the processing of

21;000;000 ¼ 10300 ð2bÞ

bits of information, far beyond the Bremermann’s limit [12].

Generally an engineering system needs to be modeled

with a portion of its environment that interact significantly

with it in order to assess some system attributes of interest.

The level of interaction with the environment can only be

subjectively assessed. By increasing the size of the

environment and level of details in a model of the system,

the complexity of the system model increases, possibly in a

manner that does not have a recognizable or observable

structure. This complexity without structure is more difficult

to model and deal with in engineering and sciences.

By increasing the complexity of the system model, our

Fig. 6. The Bremermann’s limit for pattern recognition.
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ability to make relevant assessments of the system’s

attributes can diminish. Therefore, there is a tradeoff

between relevance and precision in system modeling in

this case. Our goal should be to model a system with a

sufficient level of detail that can result into sufficient

precision and can lean to relevant decisions in order meet

the objective of the system assessment.

Living systems show signs of these tradeoffs between

precision and relevance in order to deal with complexity.

The survival instincts of living systems have evolved,

and manifest themselves as processes to cope with

complexity and information overload. The ability of a

living system to make relevant assessments diminishes with

the increase in information input [14]. Living systems

commonly need to process information in a continuous

manner in order to survive. For example, a fish needs to

process visual information constantly in order to avoid

being eaten by another fish. When a school of larger fish

rushes towards the fish, presenting it with images of threats

and dangers, the fish might not be able to process all the

information and images, and becomes confused.

Considering the information processing capabilities of

living systems as input–output black boxes, the input and

output to such systems can be measured and plotted in order

to examine such relationships and any non-linear

characteristics that they might exhibit. These relationships

for living systems can be described using the following

hypothesis that was analytically modeled and experimen-

tally validated [14]:

“As the information input to a single channel of a living

system—measured in bits per second—increases,

the information output—measured similarly—increases

almost identically at first but gradually falls behind as it

approaches a certain output rate, the channel capacity,

which cannot be exceeded. The output then levels off at that

rate, and finally, as the information input rate continues to

go up, the output decreases gradually towards zero as

breakdown or the confusion state occurs under overload.”

The above hypothesis was used to construct families of

curves to represent the effects of information input overload

as shown schematically in Fig. 7. Once the input overload is

removed, most living systems recover instantly from the

overload and the process is completely reversible;

however, if the energy level of the input is much larger

than the channel capacity, a living system might not fully

recover from this input overload. Living systems also adjust

the way they process information in order to deal with an

information input overload using one or more of the

following processes by varying degrees depending on the

level of a living system in terms of complexity: (1) omission

by failing to transmit information, (2) error by transmitting

information incorrectly, (3) queuing by delaying

transmission, (4) filtering by giving priority in processing,

(5) abstracting by processing messages with less than

complete details, (6) multiple channel processing by

simultaneously transmitting messages over several parallel

channels, (7) escape by acting to cut off information input,

and (8) chunking by transformation information in

meaningful chunks. These actions can also be viewed as

simplification means to cope with complexity and/or

an information input overload.

4.2. Closed-world versus open-world assumption

The simulated performance of a system depends heavily

upon the information available at hand about the problem

under consideration. Complete information is difficult to

come by, and is generally not available even for simple

applications. For instance, database systems use the closed

world assumptions and introduce null values to deal with

incomplete information. In general, an intelligent system

must be able to make plausible propositions that may turn

out to be incorrect when more information becomes

available. The transferable belief model (TBM) provides a

basis for a class of methods for making such propositions

when faced with incomplete information.

The TBM is a non-probabilistic approach that derives

from the Dempster–Shafers mathematical theory of evi-

dence [18]. It is a means for representing quantified degrees

of belief. Degrees of belief are obtained from agents

providing evidence at a given time within a given frame of

discernment. The method is capable of treating inconsistency

in data by introducing the ‘open-world’ assumption. In TBM,

a set of all propositions consists of the three subsets: (1) a set

of propositions known as possible (PP), (2) a set of

propositions known as impossible (IP), (3) and a set of

unknown propositions (UP). The content of the subsets

depends not only on the given problem, but also on the

evidence, which is available at a given time. As evidence

becomes available, propositions are redistributed between

the three sets as shown in Fig. 2.

The closed-world assumption postulates an empty UP set.

The open-world assumption admits the existence of a non-empty

Fig. 7. A schematic relationship of input and output information

transmission rates for living systems.
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UP set, and the fact that the truth might be in UP. In this

assumption, unknown referred to none of the known propositions.

The UP set can be considered to be empty where the truth

is necessarily in the PP set, and the V power set of 2V is PP.

The selection of the type of the world depends on the problem

at hand. The closed-world assumption can be selected for a

quality condition problem where the condition cannot be

other than one or more of the ratings, e.g. poor, poor or good,

etc. For diagnosing the degradation underlying causes, the

open-world assumption can be a suitable selection since an

analyst trying to solve the problem cannot always consider all

the possibilities, i.e. one or more underlying causes might

exist that are not known to the analyst.

The degree of conflict between two or more evidence

sources, k; implies the existence of a proposition not defined

in the frame of discernment. In the idealized closed-world

assumption that amount of conflict is redistributed among the

known propositions. In the open-world assumption,

the degree of conflict corresponds to the amount of belief

allocated to the proposition that none of the known

propositions has the truth. One must keep in mind that the

actual underlying physics might be something else other than

the causes considered, i.e. the solution is in the set Q ¼ UP

and not in the set V ¼ PP:

4.3. Open-world assumption mathematical framework

The known possible propositions set PP is based on V; a

finite set of elementary propositions. The set f is defined

as the null or impossible event. In the Dempster–Shafer’s

framework, the mass of the null set, mðfÞ is defined as zero

when belief functions are normalized and correspondingly

BelðVÞ ¼ 1: In contrast, under an open-world

assumption, the mass of the null set may be non-zero if

the frame of discernment V does not contain the truth

[19, 22]. A set of focal elements can be defined based on

mðAÞ . 0 as follows:

FðmÞ ¼ {A # VlmðAÞ . 0} ð3Þ

The elements of FðmÞ are called the focal elements of m:

Shafer [18] initially imposed a normality condition for

belief structures, i.e. f � FðmÞ: Smets [22] proposed to

relax this condition, and to interpret mðfÞ as the part of

belief committed to the assumption that none of the

hypotheses in V might be true to allow for an open-world

assumption. If, however, the truth is known with absolute

certainty to lie in V; i.e. closed-world assumption, then the

normality condition can be justified.

Given a mass function m for A; for all B # V; the belief

and the plausibility of B are defined respectively as:

BelðB _QÞ ¼
X

A#B; A–f

mðAÞ ð4aÞ

PlðB _QÞ ¼
X

A>B–f

mðAÞ ð4bÞ

for all subsets B of V; where the sums range over all the

focal elements A of m: The set UP is denoted by Q:

The value BelðB _QÞ quantifies the belief that the true

value of the frame of discernment is contained in B or Q:

The belief and plausibility functions satisfy the following

rules: (1) BelðfÞ ¼ 0; (2) BelðVÞ ¼ 1 2 mðfÞ # 1; and (3)

BelðBÞ # PlðBÞ: By definition, BelðfÞ ¼ 0; even though

mðfÞ might be positive. If the frame of discernment V is

defined such that it included the unknown propositions set

Q; then this would lead to the same belief function as with

the open-world assumption if one takes care to never allocate

any masses to propositions of V that did not include Q:

4.4. Evidential reasoning mechanism

In evidence-hypothesis reasoning, an evidence space E is

a set of mutually exclusive and collectively exhaustive

evidential elements that can arise from a source of evidence,

e.g. the set of all possible results of a laboratory test.

A hypothesis space H is a set containing all the mutually

exclusive and collectively exhaustive hypotheses possible in

the situation under consideration. Evidence-hypothesis

reasoning is a mapping from an evidence space E to a

hypothesis space H; which describes the relationships

between evidence and hypothesis subsets.

Evidence usually exists in two forms either as a linguistic

observation such as ‘high rusted member’ or a measured

parameter such as ‘chloride ion concentration rate equals to

0.6 kg Cl2/m3 (1 lb Cl2/yd)’. Accordingly, the handling of

evidence-hypothesis reasoning differs.

The evidence-hypothesis reasoning mechanism is the

task of inferring the belief in some hypotheses by collecting

relevant evidence for or against these hypotheses.

The inexact relationships among hypotheses and evidence

are classified depending on the nature of evidence,

i.e. measurement or observation. Linguistic hypothesis–

evidence reasoning manipulates if–then rules to manifest

the uncertainty associated with hypothesis – evidence

relationships. Numerical hypothesis–evidence reasoning

deals with computations based on measurements, where the

inexact relationships between evidence and hypotheses

are presented by two-dimensional plots.

4.5. Belief revision

Information is subject to change due to inherent

uncertainty in information, or because the various ignorance

types, or due to an environment that is volatile and dynamic.

Current non-monotonic reasoning systems cannot

adequately treat changes in information. Once a change in

the knowledge base, however minor, is performed, one must

begin from scratch to deal with a problem at hand as result

of evidence fusion being computationally non-monotonic

with perhaps consequentially changing system architecture.

Belief revision methods can be used to deal with changing

information [8].
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4.6. Diagnostics

Diagnostics in general is the task of inferring plausible

explanations for set of evidence, or to decide which

explanation accounts for given evidence. Observations of

distress and results of laboratory tests can be considered as

evidence for possible degradation underlying causes.

The problem is then to infer the belief in the possible

underlying causes producing the observed evidence.

A classical method of diagnostic analysis is based on

Bayesian analysis. In this case, the relations between

evidence and underlying causes are described by con-

ditional probabilities. Since mechanical, physical, and

chemical processes of degradation can act in a synergistic

manner, assigning a degradation cause might not be a

clear-cut case. Since distresses might bear on a set of causes

rather than on an individual cause and that evidences are not

infallible, one can concludes that Bayesian theorem is not an

appropriate tool for diagnostic problem. In addition,

Bayesian theorem postulates an exhaustive frame of

discernment that constitutes a complete set of well-defined

causes. The reality is that the actual underlying causes might

be something else other than the defined or identified causes.

An open-world assumption might more appropriate for such

cases as described in Section 4.3. In addition, the Bayesian

theorem can be generalized within the framework of

evidence theory where conditional probabilities are

replaced by belief functions [16,17,20,21]. Another

generalization is obtained by extending the generalized

Bayesian theorem to handle all types of belief functions,

i.e. precise, interval, and fuzzy.

5. Solving an algebraic problem set

This section examines an algebraic problem set as

identified by Sandia National Laboratories to be a basic

building block for uncertainty propagation in computational

mechanics [15]. The problem set is based on a model

structure that is know with certainty and provided as follows:

Y ¼ ðA þ BÞA ð5Þ

where A and B are the parameters that are independent, and

positive and real numbers. This model represents the

response Y of a system. Six problem types that reflect various

uncertainty representation of A and B are examined and

solved in subsequent sections. The solutions presented in this

section are based on methods that propagate uncertainties

using endpoints of the input intervals to demonstrate the

propagation processes. In order to obtain the output interval

endpoints, all possible combinations of all values in the input

intervals should be propagated using the proposed methods,

and solutions as output interval endpoints can be obtained

through incremental numerical evaluations throughout the

input intervals and using max or min operators. In some of

the problems, the endpoints of the output intervals might not

correspond to the input interval endpoint evaluations. This

step of obtaining output interval endpoints was not performed

in the paper.

5.1. Interval parameters

The parameters in this case are provided in the form of

intervals as follows:

A ¼ ½a1; a2� ð6aÞ

B ¼ ½b1; b2� ð6bÞ

The interval arithmetic definition of the power of a

positive real-valued interval ½b1; b2� using a positive

real-valued power ðaÞ can be defined as:

½b1; b2�
a ¼ ½ba

1; b
a
2� ð7Þ

Using an interval, positive real-valued power ½a1; a2�;

the interval arithmetic definition of the power of a positive

real-valued interval ½b1; b2� is

½b1; b2�
½a1;a2� ¼ ½b

a1

1 ; b
a2

2 � ð8Þ

Based on Eqs. (7) and (8), the response Y can be

computed utilizing interval addition as follows:

Y ¼ ½½a1; a2� þ ½b1; b2��
½a1;a2� ¼ ½y1; y2� ð9Þ

where

y1 ¼ ½a1 þ b1�
a1 ð10aÞ

y2 ¼ ½a2 þ b2�
a2 ð10bÞ

Example 5.1. This problem is illustrated using the

following values for the parameters A and B :

A ¼ ½0:1; 1:0�

B ¼ ½0:0; 1:0�

The response can be computed as

Y ¼ ½½0:1; 1:0� þ ½0:0; 1:0��½0:1;1:0� ¼ ½y1; y2�

¼ ½0:7943282; 1:0�

where y1 ¼ ½0:1 þ 0:0�0:1 ¼ 0:7943282; and y2 ¼ ½1:0 þ

1:0�1:0 ¼ 2:0:

5.2. An interval power and a set of intervals

The parameters in this case are provided as follows:

A ¼ ½a1; a2� ð11aÞ

Bi ¼ ½bi1; bi2� for i ¼ 1; 2;…; n ð11bÞ

The information on B is provided based on n independent

sources. The universal set of B is defined as the union of
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the n intervals. Three cases are considered herein based on

specific additional information on B:

5.2.1. A consonant or nested set of intervals

The Bi intervals are nested according to the following

structure:

Bi # Biþ1 for i ¼ 1; 2;…; n 2 1 ð12Þ

Since the Bi intervals are equally credible, they can be given

a basic assignment m ¼ 1=n: The belief and plausibility

measures, i.e. necessity and possibility, respectively, can be

computed as follows:

BelðBiÞ ¼
X

all Bj#Bi

mðBjÞ ð13Þ

PlðBiÞ ¼
X

all Bj>Bi–B

mðBjÞ ð14Þ

Eqs. (13) and (14) can be evaluated as follows:

i Bi BelðBiÞ PlðBiÞ

1 B1 1=n 1

2 B2 2=n 1

3 B3 3=n 1

..

. ..
. ..

. ..
.

n Bn 1 1

ð15Þ

Eq. (9) can now be used to compute the response

according to each Bi; and resulting interval should be

associated with the corresponding Bel and Pl.

Example 5.2.1. This case is illustrated herein using the

following values for the parameters A and B :

A ¼ ½0:1; 1:0�

B1 ¼ ½0:6; 0:8�; B2 ¼ ½0:4; 0:85�; B3 ¼ ½0:2; 0:9�; and

B4 ¼ ½0:0; 1:0�

These intervals are nested as provided below:

The response can be computed using Eqs. (9) and (15) as

i Bi BelðBiÞ PlðBiÞ y1 y2

1 ½0:6; 0:8� 0:25 1:00 0:9649611 1:80

2 ½0:4; 0:85� 0:50 1:00 0:9330329 1:85

3 ½0:2; 0:9� 0:75 1:00 0:8865681 1:90

4 ½0:0; 1:0� 1:00 1:00 0:7943282 2:00

5.2.2. A consistent set of intervals

The B intervals are structured such that

Bi > Bj – F for i ¼ 1; 2;…; n and j ¼ 1; 2;…; n ð16Þ

Similar to the previous case, since the B intervals are

equally credible they can be given a basic assignment m ¼

1=n: The belief and plausibility measures can be computed

using Eqs. (13) and (14). Then, Eq. (9) can be used to

compute the response according to each B intervals, and

resulting interval should be associated with corresponding

Bel and Pl.

Example 5.2.2. This case is illustrated using the following

values for the parameters A and B :
A ¼ ½0:1; 1:0�

B1 ¼ ½0:6; 0:9�; B2 ¼ ½0:4; 0:8�; B3 ¼ ½0:1; 0:7�; and

B4 ¼ ½0:0; 1:0�

These intervals have a common range as follows:

The response can be computed using Eqs. (9), (13) and (14)

as follows for all the B intervals:

i Bi BelðBiÞ PlðBiÞ y1 y2

1 ½0:6; 0:9� 0:25 1:00 0:9649611 1:90

2 ½0:4; 0:8� 0:25 1:00 0:9330329 1:80

3 ½0:1; 0:7� 0:25 1:00 0:8513399 1:70

4 ½0:0; 1:0� 1:00 1:00 0:7943282 2:00

The common range ðBcÞ among all the B intervals might be

of special interest, and its response can be assessed as

follows:

i Bi BelðBiÞ PlðBiÞ y1 y2

c ½0:6; 0:7� 0:25 1:00 0:9649611 1:70

The belief and plausibility of the common range ðBcÞ were

computed based on extension from possibility theory
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concepts since Bc is common to all B intervals as follows:

BelðBcÞ ¼ min½Bi� ð17aÞ

PlðBcÞ ¼ max½Bi� ð17bÞ

The proof of Eqs. (17a) and (17b) is not available and not

provided herein. These equations should be qualified before

their use.

5.2.3. An arbitrary set of intervals

In this case, the B intervals are provided in any

arbitrary structure. Similar to the previous case, since the

Bi intervals are equally credible they can be given a basic

assignment m ¼ 1=n: The belief and plausibility measures

can be computed using Eqs. (13) and (14). Then, Eq. (9)

can be used to compute the response according to each Bi;

and resulting interval should be associated with corre-

sponding Bel and Pl.

Example 5.2.3. This case is illustrated using the following

values for the parameters A and B :

A ¼ ½0:1; 1:0�

B1 ¼ ½0:6; 0:8�; B2 ¼ ½0:5; 0:7�; B3 ¼ ½0:1; 0:4�; and

B4 ¼ ½0:0; 1:0�

These intervals do not have a common range and can be

represented as follows:

The response can be assessed using Eqs. (9), (13) and (14) as

follows:

i Bi BelðBiÞ PlðBiÞ y1 y2

1 ½0:6; 0:8� 0:25 0:75 0:9649611 1:80

2 ½0:5; 0:7� 0:25 0:75 0:9779327 1:70

3 ½0:1; 0:4� 0:25 0:50 0:9330329 1:40

4 ½0:0; 1:0� 1:00 1:00 0:7943282 2:00

5.3. Sets of intervals

In this case, the parameters are provided as follows:

Ai ¼ ½ai1; ai2� for i ¼ 1; 2;…; k ð18aÞ

Bi ¼ ½bi1; bi2� for i ¼ 1; 2;…; n ð18bÞ

The information on A and B is provided based on k and n

independent sources, respectively. The universal sets of A

and B are defined as the union of the k and n respective

intervals. Three cases are considered herein based on

specific additional information on A and B:

5.3.1. Consonant or nested sets of intervals

The Ai and Bi intervals are nested according to the

following structure:

Ai # Aiþ1 for i ¼ 1; 2;…; k 2 1 ð19aÞ

Bi # Biþ1 for i ¼ 1; 2;…; n 2 1 ð19bÞ

Since the Ai and Bi intervals are equally credible, they

can be given a basic assignment mA ¼ 1=k and mB ¼ 1=n;

respectively. The belief and plausibility measures,

i.e. necessity and possibility, respectively, can be computed

according to Eqs. (13) and (14) as follows:

i Ai BelðAiÞ PlðAiÞ

1 A1 1=k 1

2 A2 2=k 1

3 A3 3=k 1

..

. ..
. ..

. ..
.

n An 1 1

ð20aÞ

and

i Bi BelðBiÞ PlðBiÞ

1 B1 1=n 1

2 B2 2=n 1

3 B3 3=n 1

..

. ..
. ..

. ..
.

n Bn 1 1

ð20bÞ

Eq. (9) can now be used to compute the response

according to each combination of Ai and Bi; and

resulting interval should be associated with corresponding

Bel and Pl using the intersection relationships from

the following rules:

BelðA > BÞ ¼ min½BelðAÞ;BelðBÞ� ð21aÞ

BelðA < BÞ $ max½BelðAÞ;BelðBÞ� ð21bÞ

PlðA > BÞ # min½PlðAÞ;PlðBÞ� ð21cÞ

PlðA < BÞ ¼ max½PlðAÞ; PlðBÞ� ð21dÞ

Example 5.3.1. This case is illustrated using the following

values for the parameters A and B :

A1 ¼ ½0:5; 0:7�; A2 ¼ ½0:3; 0:8�; and A3 ¼ ½0:1; 1:0�

B1 ¼ ½0:6; 0:8�; B2 ¼ ½0:4; 0:85�; B3 ¼ ½0:2; 0:9�; and

B4 ¼ ½0:0; 1:0�

The Bi intervals are the same as the previous corresponding

case. The response can be computed as follows with the Pl

for the resulting interval is an upper bound according to

Eq. (21c):
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5.3.2. Consistent sets of intervals

The Ai and Bi intervals are structured such that

Ai > Aj – F for i ¼ 1; 2;…; k and j ¼ 1; 2;…; k ð22aÞ

Bi > Bj – F for i ¼ 1; 2;…; n and j ¼ 1; 2;…; n ð22bÞ

Similar to the previous case, since the Ai and Bi intervals

are equally credible they can be given a basic assignment

mA ¼ 1=k and mB ¼ 1=n; respectively. The belief and

plausibility measures can be computed using Eqs. (13)

and (14). Then, Eq. (9) can be used to compute the response

according to pair of Ai and Bi; and resulting interval should

be associated with corresponding Bel and Pl using Eqs.

(21a) and (21c).

Example 5.3.2. This case is illustrated using the following

values for the parameters A and B :

A1 ¼ ½0:5; 1:0�; A2 ¼ ½0:2; 0:7�; and A3 ¼ ½0:1; 0:6�

B1 ¼ ½0:6; 0:9�; B2 ¼ ½0:4; 0:8�;

B3 ¼ ½0:1; 0:7�; and B3 ¼ ½0:0; 1:0�

The response can be computed using Eqs. (9), (13) and (14)

as follows:

The common ranges (Ac and Bc) can be treated similar to the

case presented in Section 5.2.2 if needed.

5.3.3. An arbitrary set of intervals

In this case, the Ai and Bi intervals are provided in any

arbitrary structures. Similar to the previous case, since the Ai

and Bi intervals are equally credible they can be given a

basic assignment mA ¼ 1=k and mB ¼ 1=n; respectively.

The belief and plausibility measures can be computed using

Eqs. (13) and (14). Then, Eq. (9) can be used to compute the

response according to pair of Ai and Bi; and resulting

interval should be associated with corresponding Bel and Pl

using Eqs. (21a) and (21c).

5.4. An interval power and a lognormally distributed

parameter

In this case, the parameters are provided as follows:

A ¼ ½a1; a2� ð23Þ

lnðBÞ , Nðm;sÞ ð24Þ

Monte Carlo simulation can be used to evaluate the

response according to the following steps:

B1 ¼ ½0:6; 0:9� B2 ¼ ½0:4; 0:8� B3 ¼ ½0:1; 0:7� B4 ¼ ½0:0; 1:0�

(Bel,Pl) ¼ (0.25,1.00) (0.50,1.00) (0.75,1.00) (1.00,1.00)

A1 ¼ ½0:5; 1:0� (0.33,1.00) y1 ¼ 1:048809;

y2 ¼ 1:90

(0.25,1.00)

y1 ¼ 0:948683;

y2 ¼ 1:80

(0.33,1.00)

y1 ¼ 0:774597;

y2 ¼ 1:70

(0.33,1.00)

y1 ¼ 0:707107;

y2 ¼ 2:00

(0.33,1.00)

A2 ¼ ½0:2; 0:7� (0.67,1.00) y1 ¼ 0:956353;

y2 ¼ 1:389581

(0.25,1.00)

y1 ¼ 0:902880;

y2 ¼ 1:328201

(0.50,1.00)

y1 ¼ 0:786003;

y2 ¼ 1:265580

(0.67,1.00)

y1 ¼ 0:724780;

y2 ¼ 1:449821

(0.67,1.00)

A3 ¼ ½0:1; 0:6� (1.00,1.00) y1 ¼ 0:964961;

y2 ¼ 1:275426

(0.25,1.00)

y1 ¼ 0:933033;

y2 ¼ 1:223705

(0.50,1.00)

y1 ¼ 0:851340;

y2 ¼ 1:170485

(0.75,1.00)

y1 ¼ 0:794328;

y2 ¼ 1:325782

(1.00,1.00)

B1 ¼ ½0:6; 0:8� B2 ¼ ½0:4; 0:85� B3 ¼ ½0:2; 0:9� B4 ¼ ½0:0; 1:0�

(Bel,Pl) ¼ (0.25,1.00) (0.50,1.00) (0.75,1.00) (1.00,1.00)

A1 ¼ ½0:5; 0:7� (0.33,1.00) y1 ¼ 1:048809;

y2 ¼ 1:328201

(0.25,1.00)

y1 ¼ 0:948683;

y2 ¼ 1:359040

(0.33,1.00)

y1 ¼ 0:836666;

y2 ¼ 1:389581

(0.33,1.00)

y1 ¼ 0:707107;

y2 ¼ 1:449821

(0.33,1.00)

A2 ¼ ½0:3; 0:8� (0.67,1.00) y1 ¼ 0:968886;

y2 ¼ 1:456451

(0.25,1.00)

y1 ¼ 0:898523;

y2 ¼ 1:492750

(0.50,1.00)

y1 ¼ 0:812252;

y2 ¼ 1:528830

(0.67,1.00)

y1 ¼ 0:696845;

y2 ¼ 1:600361

(0.67,1.00)

A3 ¼ ½0:1; 1:0� (1.00,1.00) y1 ¼ 0:964961;

y2 ¼ 1:80

(0.25,1.00)

y1 ¼ 0:933033;

y2 ¼ 1:85

(0.50,1.00)

y1 ¼ 0:886568;

y2 ¼ 1:90

(0.75,1.00)

y1 ¼ 0:794328;

y2 ¼ 2:00

(1.00,1.00)
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† Randomly generate B to obtain b values according to its

probability distribution as provided in Eq. (24).

† Compute the response interval as follows:

Y ¼ ½½a1; a2� þ b�½a1;a2� ¼ ½y1; y2� ð25Þ

where

y1 ¼ ½a1 þ b�a1 ð26aÞ

y2 ¼ ½a2 þ b�a2 ð26bÞ

† Repeat the simulation process N times and compute the

moments and distribution types of y1 and y2:

Example. For the following parameters:

A ¼ ½0:1; 1:0�

lnðBÞ , Nð0:5; 0:5Þ

simulation was used to compute the response. A total of

100 simulation cycles produced the following response

moments and histograms that show bimodal character-

istics:

Moment B y1 y2

Mean 1.923245 1.062593 2.923245

Standard deviation 1.009403 0.049313 1.009403

Coefficient of variation 0.5248 0.0464 0.3453

5.5. An interval power and an uncertain lognormally

distributed parameter

In this case, the parameters are provided as follows:

A ¼ ½a1; a2� ð27Þ

lnðBÞ , Nð½m1;m2�; ½s1;s2�Þ ð28Þ

The second order uncertainty provided in characterizing

the lognormal parameter can be rolled into the parameters

using Monte Carlo simulation to obtain lnðBÞ , Nðm;sÞ:

Then, the computational procedure presented in Section 5.4

can be used to solve the problem.

5.6. A set of power intervals and a set of an uncertain

lognormally distributed parameter

The parameters, in this case, are provided as follows:

Ai ¼ ½ai1; ai2� for i ¼ 1; 2;…; k ð29Þ

lnðBiÞ , Nð½mi1;mi2�; ½si1;si2�Þ for i ¼ 1; 2;…; n ð30Þ

The information on A and B is provided based on k and n

independent sources, respectively. The universal sets of A

and B are defined as the union of the k and n

respective intervals. Three cases can be developed as

combinations of the computational procedures of Sections

5.3 and 5.5.
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