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This paper provides an overview of working definitions of knowledge, ignorance,
information and uncertainty and summarises formalised philosophical and mathemat-
ical framework for their analyses. It provides a comparative examination of the
generalised information theory and the generalised theory of uncertainty. It summarises
foundational bases for assessing the reliability of knowledge constructed as a collective
set of justified true beliefs. It discusses system complexity for ancestor simulation
potentials. It offers value-driven communication means of knowledge and contrarian
knowledge using memes and memetics.
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1. Introduction

Philosophers have concerned themselves with the study of knowledge, truth and reality

and knowledge acquisition since the early days of the Greek philosophers who first

proposed a rational explanation of the natural world and its powers. Ayyub (2001)

provides an introduction to knowledge, epistemology, their development and related

terminology to form a basis for analysing and understanding knowledge, information,

ignorance and uncertainty. Philosophers defined knowledge, its nature and methods of

acquisitions that evolved over time producing various schools of thought.

The objective of this paper is to provide an overview of working definitions of

knowledge, ignorance, information and uncertainty and to summarise formalised

philosophical, analytical and mathematical frameworks that are suitable for systems

in engineering and sciences. It summarises foundational bases for assessing the

reliability of knowledge constructed as a collective set of justified true beliefs (JTBs),

addresses system complexity, conceptually relates mass, energy, entropy and information

towards ancestor simulation potentials and offers value-driven communication means of

knowledge and contrarian knowledge using memes and memetics. This paper is not

intended to offer a complete treatise on these subjects but to offer a cross-cutting thread

from information and associated uncertainties to knowledge with its deficiencies as

perceived and constructed by humans and propagated by cultures through memes

and memetics.
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2. Information and knowledge

2.1 Systems framework: realism and constructivism

The examination of uncertainty, information, ignorance and knowledge requires a systems

framework in order to characterise the nature of knowledge. Two views have emerged in

systems science for the purpose of system definition: realism and constructivism, as

described by Ayyub and Klir (2006).

According to realism, a system that is obtained by applying correctly the principles and

methods of science represents some aspects of the real world. This representation is only

approximate, due to limited capability or resolution of our sensors and measuring

instruments, and the representation of the system is viewed as a homomorphic image of its

counterpart in the real world. Using more enhanced capability or refined instruments, the

homomorphic mapping between entities of the system of concern and those of its real-

world counterpart (the corresponding ‘real system’) becomes also more refined, and the

system becomes a better representation of its real-world counterpart. Realism thus

assumes the existence of systems in the real world, which are usually referred to as ‘real

systems’. It claims that any system obtained by sound scientific inquiry is an approximate

(simplified) representation of a ‘real system’ via an appropriate mapping.

According to constructivism, all systems are artificial abstractions. They are not made

by nature and presented to us to be discovered, but we construct them by our perceptual and

mental capabilities within the domain of our experiences. The concept of a system that

requires correspondence to real world is illusory because there is no way of checking

such correspondence. We have no access to the real world except through experience.

It seems that the constructivist view has become predominant, at least in systems

science, particularly in the way formulated by von Glasersfeld (1995). According to this

formulation, constructivism does not deal with ontological questions regarding the real

world. It is intended as a theory of knowing, not a theory of being. It does not require analysts

to deny ontological reality. Moreover, the constructed systems are not arbitrary: they

must not collide with the constraints of the experiential domain. The aim of constructing

systems is to organise our experiences in useful ways. A system is useful if it helps us to

achieve some aims, for example, to predict, retrodict, control and make proper decisions.

We perceive reality as a continuum in its composition of objects, concepts and

propositions. We construct knowledge in quanta to meet constraints related to our

cognitive abilities and limitations, producing what can be termed as quantum knowledge.

This quantum knowledge leads to and contains ignorance – manifested in two forms: (1)

ignorance of some states of ignorance and (2) incompleteness and/or inconsistency, as

discussed in detail in subsequent sections. The ignorance of a state of ignorance is called

blind ignorance. The incompleteness form of ignorance stems from quantum knowledge

that does not cover the entire domain of inquiry. The inconsistency form of ignorance rises

from specialisation and focuses on a particular specialty discipline or science or

phenomenon without, for example, accounting for interactions with or from other sciences

or disciplines or phenomena.

2.2 Data, information, knowledge and opinions defined

Many disciplines of engineering and sciences rely on the development and use of

predictive models that in turn require data, information, knowledge and sometimes

subjective opinions of experts. Analysts commonly encounter the challenge of

constructing knowledge from data of mixed types collected for diverse purposes.
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An overview of working definitions of data, information, knowledge and opinions is

necessary and is provided in this section.

Data are unconnected numbers or symbols (e.g. names, dates and positions) or sound,

images etc, representing objects and entities with appropriate levels of reliability or belief.

Information as a concept has many meanings and is derived from the Latin accusative

form (informationem), derived from the verb ‘informare’ (to inform) in the sense of ‘to

give form to the mind’, ‘to discipline’, ‘instruct’ or ‘teach’. Information subsumes data

with the addition of context. It can be simply defined as a message received and

understood and in terms of data, can be defined as a collection thereof from which

conclusions may be drawn. Information can be viewed as a pre-processed input to our

intellect system of cognition and knowledge acquisition and creation. Information can lead

to knowledge through investigation, study and reflection. However, knowledge and

information about a system might not constitute the eventual evolutionary knowledge state

about the system as a result of not meeting the justification condition as discussed under

the definition of knowledge or the ongoing evolutionary process or both.

The definition of knowledge can be based on evolutionary epistemology (Honderich

1995) using an evolutionary model. Knowledge can be viewed to consist of two types,

non-propositional and propositional knowledge. The non-propositional knowledge can be

further broken down into know-how and concept knowledge and familiarity knowledge

(commonly called object knowledge). The concept and know-how knowledge types

require someone to be familiar with particular words, phrases, images, doctrines and/or

thoughts and know how to do a specific activity, function, procedure, etc., such as riding a

bicycle. The concept knowledge can be empirical in nature. In evolutionary epistemology,

the concept and know-how knowledge types are viewed as historical antecedents to

propositional knowledge. The object knowledge is based on a direct acquaintance with a

person, place or thing, for example, Mr Smith knows the President of the United States.

The propositional knowledge is based on propositions that can be either true or false, for

example, Mr Smith knows that the Rockies are in North America (Sober 1991, di Carlo

1998). This proposition can be expressed as

Mr Smith knows that the Rockies are in North America (1a)

or

S knows P, (1b)

where S is the subject, that is, Mr Smith, and P is the claim ‘the Rockies are in North

America’. Epistemologists require the following three conditions for making an

acceptable claim:

. S must believe P,

. P must be true and

. S must have a reason to believe P, that is, S must be justified in believing P.

The justification in the third condition can take various forms; however, simplistically,

it can be taken as justification through rational reasoning or empirical evidence. Therefore,

propositional knowledge is defined as a body of propositions that meet the conditions of

JTB. This general definition does not satisfy a class of examples called the Gettier

problem, initially revealed in 1963 by Edmund Gettier (Austin 1998). Gettier showed that

we can have highly reliable evidence and still not have knowledge (Ayyub 2001). Also,

someone can sceptically argue that as long as it is possible for S to be mistaken in believing
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P (i.e. not meeting third condition), the proposition is false. This argument, sometimes

called a Cartesian argument, undermines empirical knowledge. In evolutionary

epistemology, this high level of scrutiny is not needed and need not be satisfied in the

biological world. According to evolutionary epistemology, true beliefs can be justified

causally from reliably attained law-governed procedures, where law refers to natural law.

Sober (1991) noted that there are very few instances, if ever, where we have perfectly

infallible evidence. Almost all of our common sense beliefs are based on evidence that is

not infallible even though some may have overwhelming reliability. The presence of a

small doubt in meeting the justification condition does not make our evidence infallible,

but only reliable. Evidence reliability and infallibility arguments form the bases of the

reliability theory of knowledge. Figure 1 shows a breakdown of knowledge by types,

sources and objects that was based on a summary provided by Honderich (1995).

Knowledge is defined in the context of the humankind and associated evolution,

language and communication methods, social and economic dialectic processes and

cultures and cannot be removed from them. As a result, knowledge would always reflect

the imperfect and evolutionary nature of humans that can be attributed to their reliance on

their senses for information acquisition, their dialectic processes, persistence of cultures

and their mind for extrapolation, creativity, reflection and imagination with associated

biases as a result of preconceived notions due to time asymmetry, specialisation and other

factors. An important dimension in defining the state of knowledge and truth about a

system is non-knowledge or ignorance or the illusion of knowledge as discussed in

subsequent sections.

Opinions rendered by experts which are based on information and existing knowledge

can be defined as preliminary propositions with claims that are not fully justified or are

justified with an inadequate reliability level but are not necessarily infallible. Expert

Figure 1. Knowledge sources (Ayyub 2001 after Honderich 1995).

B.M. Ayyub418

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
y
y
u
b
,
 
B
i
l
a
l
 
M
.
]
 
A
t
:
 
1
4
:
0
6
 
1
2
 
A
p
r
i
l
 
2
0
1
0



opinions are seeds of propositional knowledge that do not meet one or more of the

conditions required for the JTB and according to the reliability theory of knowledge.

Opinions are valuable and necessary in many situations where analysts might not have any

credible substitutes and offer the means for knowledge expansion; however, decisions

made based on opinions can be risky because of their preliminary nature and the potential

for someone to invalidate them in the future.

The relationships among knowledge, information, opinions and evolutionary

epistemology are schematically shown in Figure 2. The outcomes of the dialectic

processes are dependent on the effectiveness of the communication methods, such as

languages, visual and audio formats, economic factors, schools of thought and political

and social processes within peers, groups, societies and cultures.

2.3 Potential propositional outcomes for knowledge construction

A primary component of knowledge is propositions meeting the conditions of JTBs

according to Equation (1(a) and (b)) as discussed in the previous section. The justification

process according to JTB produces potential outcomes as provided in Table 1. According

to the table, an analyst hypothesises a belief (as shown in column 1) to test a perceived

state of reality (i.e. column 5). The belief is expressed in an affirmative or contrarian

manner to the state of reality. The analyst obtains a body of evidence (either credible or not

credible according to column 2); however, the evidence credibility is not known to the

analyst with certainty. The analyst then utilises some logic founded in some mathematical

framework to test the hypothesis as provided in column 3 of the table (using either suitable

or not suitable logic; however, the suitability of logic for the case in hand is not known to

Figure 2. Information, opinion, knowledge and evolution (Ayyub 2001).
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Table 1. Potential propositional outcomes for constructing knowledge.

Outcome justification

Hypothesised
belief relating
to reality state
(1)

Evidence
credibility (2)

Logic
suitability (3)

Outcome
characterising
reality state (4)

Reality state
(unknown to
an analyst) (5)

Comments relating
to knowledge type

(i.e. the state of mind
of an analyst) (6)

True Credible Suitable True True Lasting knowledge gained
Not true True Illusion of knowledge

Credible Not suitable True True Knowledge with ignoratio
elenchi, that is, logical
fallacy

Not true True Knowledge illusion with
ignoratio elenchi, that is,
logical fallacy

Not credible Suitable True True Gettier-like knowledge
Not true True Illusion of knowledge

Not credible Not suitable True True Gettier-like knowledge
Not true True Knowledge illusion with

ignoratio elenchi, that is,
logical fallacy

True Credible Suitable True Not true Illusion of knowledge
Not true Not true Lasting knowledge gained

Credible Not suitable True Not true Knowledge illusion with
ignoratio elenchi, that is,
logical fallacy

Not true Not true Knowledge with ignoratio
elenchi, that is, logical
fallacy

Not credible Suitable True Not true Illusion of knowledge
Not true Not true Gettier-like knowledge

Not credible Not suitable True Not true Knowledge illusion with
ignoratio elenchi, that is,
logical fallacy

Not true Not true Gettier-like knowledge
Not true Credible Suitable True Not true Illusion of knowledge

Not true Not true Lasting knowledge gained
Credible Not suitable True Not true Knowledge illusion with

ignoratio elenchi, that is,
logical fallacy

Not true Not true Knowledge with ignoratio
elenchi, that is, logical
fallacy

Not credible Suitable True Not true Illusion of knowledge
Not true Not true Gettier-like knowledge

Not credible Not suitable True Not true Knowledge illusion with
ignoratio elenchi, that is,
logical fallacy

Not true Not true Gettier-like knowledge
Not true Credible Suitable True True Lasting knowledge gained

Not true True Illusion of knowledge
Credible Not suitable True True Knowledge with ignoratio

elenchi, that is, logical
fallacy

Not true True Knowledge illusion with
ignoratio elenchi, that is,
logical fallacy

Not credible Suitable True True Gettier-like knowledge
Not true True Illusion of knowledge

Not credible Not suitable True True Gettier-like knowledge
Not true True Knowledge illusion with

ignoratio elenchi, that is,
logical fallacy
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the analyst with certainty). Two outcomes (i.e. column 4) are possible that characterise the

state of reality of either matching or not matching the unknown state of reality (i.e.

column 5). The last column of the table is a classification of the resulting knowledge as a

state of mind of the analyst. These states range from lasting knowledge gained to a state of

illusion in knowledge. According to Stephen Hawking, ‘The greatest enemy of knowledge

is not ignorance, it is the illusion of knowledge’. A value judgement on ‘how desirable the

outcomes are’ depends on the objective and role of the analyst. For example, scientists

working in a laboratory should desire achieving a state of lasting knowledge gained. On

the other hand, an intelligence or propaganda analyst might desire to feed evidence to

adversaries to lead the adversaries to a state of an illusion of knowledge. Similarly, a

politician might desire to achieve a state of an illusion of knowledge by a constituency base

to defeat an opponent in an election for a public office.

3. Ignorance and uncertainty

Generally, we tend to focus on and emphasise ‘what is known’ and not ‘what is unknown’.

Even the English language lends itself for this emphasis. For example, we can easily state

that Expert A informed Expert B, whereas we cannot directly state the contrary. We can

only state it by using the negation of the earlier statement as ‘Expert A did not inform

Expert B’. Statements such as ‘Expert A misinformed Expert B’ or ‘Expert A ignored

Expert B’ do not convey the same (intended) meaning. Another example is ‘John knows

David’, for which a meaningful direct contrary statement does not exist. The emphasis on

knowledge and not on ignorance can also be noted in sociology by having a field of study

called the sociology of knowledge and not having sociology of ignorance, although

Weinstein and Weinstein (1978) introduced the sociology of non-knowledge and Smithson

(1985) introduced the theory of ignorance.

The state of ignorance for a person (or a society) can be unintentional or deliberate due

to an erroneous cognition state and not knowing relevant information or ignoring

information and deliberate inattention to something for various reasons such as limited

resources or cultural opposition, respectively. The latter type is a state of conscious

ignorance which is not intentional, and once recognised, evolutionary species try to

correct for that state for survival reasons with varying levels of success. The former

ignorance type belongs to the blind ignorance category. Therefore, ignoring means that

someone can either unconsciously or deliberately refuse to acknowledge or regard or leave

out an account or consideration for relevant information (di Carlo 1998). These two states

should be treated in developing a hierarchal breakdown of ignorance.

According to evolutionary epistemology, ignorance has factitious, that is, human-

made, perspectives. Smithson (1988) provided a working definition of ignorance based on

‘Expert A is ignorant from B’s viewpoint if A fails to agree with or shows awareness of

ideas which B defines as actually or potentially valid’. This definition allows for self-

attributed ignorance, and either Expert A or Expert B can be the attributer or perpetrator of

ignorance. Our ignorance and claimed knowledge depend on our current historical setting

which is relative to various natural and cultural factors such as language, logical systems,

technologies and standards which have developed and evolved over time. Therefore,

humans evolved from blind ignorance through gambles to a state of incomplete knowledge

with reflective ignorance recognised through factitious perspectives. In many scientific

fields, the level of reflective ignorance becomes larger as the level of knowledge increases.

Duncan and Weston-Smith (1997) stated in the Encyclopedia of Ignorance that compared

to our pond of knowledge, our ignorance remains Atlantic. They invited scientists to state
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what they would like to know in their respective fields and noted that the more eminent

they were, the more readily and generously they described their ignorance. Clearly, before

solving a problem, it needs to be articulated. Thomas Sowell, a senior fellow on public

policy at the Hoover Institution (http://www.hoover.stanford.edu/), said ‘It takes

considerable knowledge to realize the extent of your ignorance’.

Ignorance can be viewed to have a hierarchal classification based on its sources and

nature as shown in Figure 3 with the brief definitions provided in Table 2. Ignorance can be

classified into two types, blind ignorance (also called meta-ignorance) and conscious

ignorance (also called reflective ignorance).

Blind ignorance includes not knowing relevant know-how, object-related information

and relevant propositions that can be justified. The unknowable knowledge can be defined

as knowledge that cannot be attained by humans based on current evolutionary

progressions, or cannot be attained at all due to human limitations or can only be attained

through quantum leaps by humans. Blind ignorance also includes irrelevant knowledge

that can be of two types: (1) relevant knowledge that is dismissed as irrelevant or ignored

and (2) irrelevant knowledge that is believed to be relevant through non-reliable or weak

justification or as a result of ignoratio elenchi (Table 1). The irrelevance type can be due to

untopicality, taboo and undecidability. Untopicality can be attributed to intuitions of

experts that could not be negotiated with others in terms of cognitive relevance. Taboo is

due to socially reinforced irrelevance. Issues that people must not know, deal with, enquire

about or investigate define the domain of taboo. The undecidedness type deals with issues

that cannot be designated true or false because they are considered insoluble, or solutions

that are not verifiable or as a result of ignoratio elenchi. A third component of blind

ignorance is fallacy that can be defined as erroneous beliefs due to misleading notions. The

Newsweek Magazine (29 December 2003) selected a quote by the US Secretary of

Defence Donald Rumsfeld in its 2003 quotes of the year used to clarify the US policy on

the war on terror at a Pentagon briefing that includes elements related to Figure 3 as ‘There

are known knowns. These are things that we know. There are known unknowns. That is to

say, there are things that we know we don’t know. But there are also unknown unknowns.

There are things we don’t know we don’t know’.

Figure 3. Ignorance hierarchy (Ayyub 2001).
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Kurt Gödel (1906–1978) proved the incompleteness of axioms for arithmetic as well

as the relative consistency of the axiom of choice and continuum hypothesis with the other

axioms of set theory (Hofstadter 1999, Nagel and Newman 2001). According to Gödel,

mathematicians hoped that their axioms could be proven consistent, that is, free from

contradictions, and complete, that is, strong enough to provide proofs of all true

statements. Gödel, however, showed these hopes were overly naive by proving that any

consistent formal system strong enough to axiomatise arithmetic must be incomplete; that

is, there are statements that are true but not provable. Also, one cannot hope to prove the

Table 2. Taxonomy of Ignorance.

Term Meaning

1. Blind ignorance Ignorance of self-ignorance or called meta-ignorance.
1.1. Unknowable Knowledge that cannot be attained by humans based on current

evolutionary progressions, or cannot be attained at all due to
human limitations, or can only be attained through quantum leaps by
humans.

1.2. Irrelevance Ignoring something.
1.2.1. Untopicality Intuitions of experts that could not be negotiated with others in

terms of cognitive relevance.
1.2.2. Taboo Socially reinforced irrelevance. Issues that people must not

know, deal with, enquire about or investigate.
1.2.3. Undecidedness Issues that cannot be designated true or false because they are

considered insoluble, or solutions that are not verifiable, or
ignoratio elenchi.

1.3. Fallacy Erroneous belief due to misleading notions.

2. Conscious ignorance A recognised self-ignorance through reflection.
2.1. Inconsistency Inconsistency in knowledge can be attributed to distorted

information as a result of inaccuracy, conflict, contradiction
and/or confusion.

2.1.1. Confusion Wrongful substitutions.
2.1.2. Conflict Conflicting or contradictory assignments or substitutions.
2.1.3. Inaccuracy Bias and distortion in degree.

2.2. Incompleteness Lacking or non-whole knowledge in its extent due to absence
or uncertainty.

2.2.1. Absence Incompleteness in kind.
2.2.2. Unknowns The difference between the becoming knowledge state and

current knowledge state
2.2.3. Uncertainty Knowledge incompleteness due to inherent deficiencies with

acquired knowledge.
2.2.3.1. Ambiguity The possibility of having multi-outcomes for processes or systems.

(a) Unspecificity Outcomes or assignments that are incompletely defined.
(b) Non-specificity Outcomes or assignments that are improperly or incorrectly defined.

2.2.3.2. Approximations A process that involves the use of vague semantics in language,
approximate reasoning and dealing with complexity by
emphasising relevance.

(a) Vagueness Non-crispness of belonging and non-belonging of elements to a set
or a notion of interest.

(b) Coarseness Approximating a crisp set by subsets of an underlying partition of
the set’s universe that would bound the set of interest.

(c) Simplifications Assumptions needed to make problems and solutions tractable.
2.2.3.3. Likelihood Defined by its components of randomness, statistical and modelling.

(a) Randomness Non-predictability of outcomes.
(b) Sampling Samples versus populations.
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consistency of such a system using the axioms themselves (Hofstadter 1999, Nagel and

Newman 2001). Moreover, many systems defined in engineering and sciences are not

based on a closed universe defined by sets and accompanying axioms, but on potentially an

open universe defined by sets, including vague sets, and axioms, as constructed and

deemed appropriate by humans.

Within the context of the collective propositional knowledge of humans (with the

redundancy herein, since all knowledge is attributable to humans, is for emphasis), we could

state that humans cannot be both consistent and complete and could not prove completeness

without proving inconsistency and vice versa. This view can be used as a basis for classifying

the conscious ignorance into inconsistency and incompleteness. This classification is also

consistent with the concept of quantum knowledge previously discussed.

Inconsistency in knowledge can be attributed to distorted information as a result of

inaccuracy, conflict, contradiction and/or confusion as shown in Figure 3. Inconsistency

can result from assignments and substitutions that are wrong, conflicting or biased

producing confusion, conflict or inaccuracy, respectively. The confusion and conflict

result from in-kind inconsistent assignments and substitutions, whereas inaccuracy results

from a level bias or an error in these assignments and substitutions.

Incompleteness is defined as lacking or non-whole knowledge in its extent. Knowledge

incompleteness consists of (1) absence and unknowns as incompleteness in kind and (2)

uncertainty. The unknowns or unknown knowledge can be viewed in evolutionary

epistemology as the difference between the becoming knowledge state and current

knowledge state. The knowledge absence component can lead to one of the scenarios: (1)

no action and working without the knowledge, (2) unintentionally acquiring irrelevant

knowledge leading to blind ignorance and (3) acquiring relevant knowledge that can be

with various uncertainties and levels. The fourth possible scenario of deliberately

acquiring irrelevant knowledge is not listed since it is not realistic.

Uncertainty can be defined as knowledge incompleteness due to inherent deficiencies

with acquired knowledge. Klir (2006) formally defines uncertainty as information

deficiency including deficiency types of incompleteness, imprecision, fragmentation,

unreliability, vagueness or contradiction. Uncertainty can be classified based on its sources

into three types: ambiguity, approximations and likelihood. The ambiguity comes from the

possibility of having multi-outcomes for processes or systems. Recognising only some of

the possible outcomes creates uncertainty. The recognised outcomes might constitute only

a partial list of all possible outcomes leading to unspecificity. In this context, unspecificity

results from outcomes or assignments that are incompletely defined. The improper or

incorrect definition of outcomes, that is, error in defining outcomes, can be called non-

specificity. In this context, non-specificity results from outcomes or assignments that are

improperly defined. The unspecificity is a form of knowledge absence and can be treated

similarly to the absence category under incompleteness. The non-specificity can be viewed

as a state of blind ignorance.

The human mind has the ability to perform approximations through reduction and

generalisations, that is, induction and deduction, respectively, in developing knowledge.

The process of approximation can involve the use of vague semantics in language,

approximate reasoning and dealing with complexity by emphasising relevance.

Approximations can be viewed to include vagueness, coarseness and simplification.

Vagueness results from the imprecise nature of belonging and non-belonging of elements to

a set or a notion of interest, whereas coarseness results from approximating a set by subsets

of an underlying partition of the set’s universe that would bound the crisp set of interest.

Simplifications are assumptions introduced to make problems and solutions tractable.
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Likelihood can be defined in the context of chance, odds and gambling. Likelihood has

primary components of randomness and sampling. Randomness stems from the non-

predictability of outcomes. Engineers and scientists commonly use samples to characterise

populations, hence the last type.

4. Generalised theories of information and uncertainty

Defining uncertainty as information deficiency means that information contains

uncertainty, and reducing uncertainty means enhancing information. Therefore,

information and uncertainty can be viewed as a duality defining two mutually antagonistic

principles as bases for knowledge construction and associated ignorance. It is an

eventuality that we have two generalised theories to address them, as synthesised and

created by Klir (1996) and Zadeh (2005, 2006), respectively. The purpose of this section is

to briefly introduce the two theories and the appropriate sources for necessary comparative

examinations in future studies.

4.1 Generalised information theory

The recognition that scientific knowledge can be organised, by and large, in terms of

systems of various types is an important outcome of systems science (Klir 1972, 1985).

Systems are constructed for various purposes, such as predicting, retrodicting, prescribing,

diagnosing and controlling. Uncertainty was recognised as a primary driver in systems

analysis for several centuries; however, it was liberated from its probabilistic confines only

in the second half of the twentieth century (Klir 2004, 2005, 2006). It is closely connected

with two important generalisations in mathematics. One of them is the generalisation of

classical measure theory (Halmos 1950) to the theory of generalised measures, which was

first suggested by Gustave Choquet (1953–1954) in his theory of capacities. The second

one is the generalisation of classical set theory to fuzzy set theory, introduced by Zadeh

(1965) and Klir and Yuan (1995). Generalised measures are obtained by abandoning the

requirement of additivity of classical measures. Fuzzy sets are obtained by abandoning the

requirement of sharp boundaries of classical sets. These generalisations enlarged

substantially the framework for formalising uncertainty. As a consequence, they made it

possible to conceive new theories of uncertainty as provided in Figure 4 (Klir and

Wierman 1999, Ayyub and Klir 2006) according to formalised languages as classified in

Figure 5 (Ayyub and Klir 2006).

In general, uncertainty is an expression of some information deficiency. This suggests

that information could be measured in terms of uncertainty reduction. To reduce relevant

uncertainty in a situation formalised within a mathematical theory it requires that some

relevant action be taken by a cognitive agent, such as performing a relevant experiment,

searching for a relevant fact or accepting and interpreting a relevant message. If results of

the action taken (an experimental outcome, a discovered fact, etc.) reduce uncertainty

involved in the situation, then the amount of information obtained by the action is

measured by the amount of uncertainty reduced – the difference between a priori and a

posteriori uncertainty. Measuring information in this way is clearly contingent upon our

capability to measure uncertainty within the various mathematical frameworks.

Information measured solely by uncertainty reduction is an important, even though

restricted, notion of information. To distinguish it from the various other conceptions of

information, it is common to refer to it as uncertainty-based information (Klir 2006).
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A research programme whose objective is to develop a broader treatment of

uncertainty-based information, not restricted to probabilistic formalisation of

uncertainty, was introduced in the early 1990s under the name ‘generalised information

theory’ (GIT; Klir 1991). The ultimate goal of GIT is to develop the capability to deal

with any type of uncertainty-based information that is recognised on intuitive grounds.

To be able to deal with each recognised type of uncertainty (and the associated type of

information) in an operational way, relevant issues must be addressed at each of the

following four levels:

. Level 1 – find an appropriate mathematical representation of the conceived type

of uncertainty;

. Level 2 – develop a calculus by which this type of uncertainty attributes can be

properly quantified (i.e. measures) and manipulated;

Figure 4. Ordering uncertainty theories by levels of their generality (Ayyub and Klir 2006).
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. Level 3 – find a meaningful way of measuring relevant uncertainty in any

situation formalised in the theory and

. Level 4 – develop methodological aspects of the theory, including procedures for

making the various uncertainty principles operational within the theory.

4.2 Generalised theory of uncertainty

Zadeh (2005, 2006) introduced the generalised theory of uncertainty (GTU), where

uncertainty is considered as an attribute of information. Information is conveyed by

constraining the values of a variable, and a proposition is considered as a carrier of

information. A proposition is therefore treated as a generalised constraint. For example,

the statement ‘Monika is young’ includes a fuzzy constraint on Monika’s age. Another

example, the statement ‘hotel checkout time is 1:00 pm’ includes a crisp constraint on the

checkout time. For example, the statement that X is ‘approximately five’ constrains the

spectrum of possible values for X, where the constraint is represented as a fuzzy set

‘approximately five’. Within the GTU, each uncertainty modality would be explicitly

treated as a generalised constraint without the need to transform among theories.

The general syntax for making statements under the GTU is Z¼ X isr Y, where the value

of r specifies the modality of the constraint (‘r ¼ blank’ is possibilistic, ‘r ¼ p’ is

probabilistic, ‘r ¼ v’ is veristic, ‘r ¼ u’ is usuality, ‘r ¼ rs’ is a random set, ‘r ¼ fg’ is a

fuzzy graph, ‘r ¼ bm’ is bimodal and ‘r ¼ g’ is a group). Operations such as conjunction,

disjunction, projection and propagation can be performed on multiple constraints.

According to GTU, each variable is constrained according to the modality of the

uncertainty type present. Treating variables as information with possibilistic constraints

(i.e. fuzzy sets) and using precisiated natural language, a deduction rule should be selected

to match the protoforms of the data and query.

Figure 5. Formalised languages (Ayyub and Klir 2006).
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GTU and GIT offer two complementary tracks for handling available information in

its native form. Where GTU differs is in the processing of information. GTU does not

transform information of different modalities to facilitate aggregation under a common

uncertainty framework but rather preserves the natural representation of the information

and selects the appropriate deduction rules according to the types of constraints present in

the information. In this sense, all information is processed in its native form without the

need for transformation. The challenge, however, is to build and maintain a library of

deduction rules for processing all possible combinations of uncertainty types, which Zadeh

(2005) suggests to be an area of ongoing research.

5. System complexity and ancestor simulation

Several facets of complexity necessitate the use of several reasonable classifications of

complexity investigations. Within the context of system definition, complexity can be

classified into two broad categories: (1) complexity with structure and (2) complexity

without structure. The complexity with structure was termed organised complexity by

Weaver (1948). Organised complexity can be observed in a system that involves nonlinear

differential equations with a lot of interactions among a large number of components and

variables that define the system, such as in life, behavioural, social and environmental

sciences. Such systems are usually non-deterministic in their nature. Advancements in

computer technology and numerical methods have enhanced our ability to obtain solutions

of these problems effectively and inexpensively. These computer and numerical

advancements are not limitless, as the increasing computational demands lead to what is

termed transcomputational problems capped by the Bremermann’s limit (Bremermann

1962). This Bremermann’s limit, which was derived on the basis of quantum theory, is

expressed by the following proposition (Bremermann 1962): ‘No data processing systems,

whether artificial or living, can process more than 2 £ 1047 bits per second per gram of its

mass’, where data processing is defined as transmitting bits over one or several of a

system’s channels. Klir and Folger (1988) provide additional information on the

theoretical basis for this proposition. Considering a hypothetical computer that has the

entire mass of the Earth (6 £ 1027 g) operating for a time period equal to an estimated age

of the Earth (3.14 £ 1017 s), this imaginary computer would be able to process

2.56 £ 1092 bits, or rounded to the nearest power of 10, 1093 bits, defining the

Bremermann’s limit. Many scientific and engineering problems defined to include

extensive details could easily exceed this limit. Klir and Folger (1988) provided the

examples of pattern recognition and human vision that can easily reach transcomputa-

tional levels. In pattern recognition, consider a square q £ q spatial array defining n ¼ q 2

cells that partition the recognition space. Pattern recognition often involves colour. Using

k colours, as an example, the number of possible colour patterns within the space is k n. In

order to stay within the Bremermann’s limit, the inequality k n # 1093 must be met.

According to Klir and Folger (1988), if we consider a retina of about one million cells with

each cell having only two states of active and inactive in recognising an object, modelling

the retina in its entirety would require the processing of 21,000,000 ¼ 10300 bits of

information, far beyond the Bremermann’s limit.

Organised complexity in nature offers another interesting aspect of complexity in that

it can be decomposed into an underlying repeated unit (Flake 1998). For example,

economic markets that defy prediction, or the pattern recognition capabilities of any of the

vertebrates, or the human immune system’s response to viral and bacterial attacks or the

evolution of life on our planet are emergent in that they contain simple units that, when
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combined, form a more complex whole. They are examples of the whole of the system

being greater than the sum of the parts, which is a fair definition of holism – the very

opposite of reductionism. They are similar to an ant colony. Although a single ant exhibits

a simple behaviour that includes a very small number of tasks depending on its caste, such

as foraging for food, or caring for the queen’s brood, or tending to the upkeep of the nest,

defending against enemies or in the case of the queen laying eggs; the behaviour of the ant

colony as a whole is very complex. The ant colony includes millions of workers that can

sweep whole regions clean of animal life and the fungus-growing ants that collect

vegetable matter as food for symbiotic fungi and then harvest a portion of the fungi as food

for the colony. The physical structure of the colony that ants build often contains

thousands of passageways and appears mazelike to human eyes but are easily navigated by

the inhabitants. The point herein is that an ant colony is more than just a bunch of ants. An

organised complexity exists that is challenging to scientists. By knowing how each caste in

an ant species behaves would not enable a scientist to magically infer that ant colonies

would possess so many sophisticated patterns of behaviour.

By increasing the complexity of the system model, our ability to make relevant

assessments of the system’s attributes diminishes. Therefore, there is always a tradeoff

between relevance and precision in system modelling in this case. Our goal should be to

model a system with a sufficient level of detail that can result in sufficient precision and

can lean to relevant decisions in order to meet the objective of the system assessment.

Living systems show signs of these tradeoffs between precision and relevance in order to

deal with complexity. The survival instincts of living systems have evolved and manifest

themselves as processes to cope with complexity and information overload. The ability of

a living system to make relevant assessments diminishes with the increase in information

input as discussed by Miller (1978). Living systems commonly need to process

information in a continuous manner in order to survive. For example, a fish needs to

process visual information constantly in order to avoid being eaten by another fish. When a

school of larger fish rushes towards the fish, presenting it with images of threats and

dangers, the fish might not be able to process all the information and images and becomes

confused. Considering the information processing capabilities of living systems as input–

output black boxes, the input and output to such systems can be measured and plotted in

order to examine such relationships and any nonlinear characteristics that they might

exhibit. Miller (1978) described these relationships for living systems using the following

hypothesis that was analytically modelled and experimentally validated:

As the information input to a single channel of a living system – measured in bits per second
– increases, the information output – measured similarly – increases almost identically at
first but gradually falls behind as it approaches a certain output rate, the channel capacity,
which cannot be exceeded. The output then levels off at that rate, and finally, as the
information input rate continues to go up, the output decreases gradually towards zero as
breakdown or the confusion state occurs under overload.

The above hypothesis was used to construct families of curves to represent the effects

of information input overload. Once the input overload is removed, most living systems

recover instantly from the overload and the process is completely reversible; however, if

the energy level of the input is much larger than the channel capacity, a living system

might not fully recover from this input overload. Living systems also adjust the way they

process information in order to deal with an information input overload using one or more

of the following processes by varying degrees depending on the level of a living system in

terms of complexity: (1) omission by failing to transmit information, (2) error by

transmitting information incorrectly, (3) queuing by delaying transmission, (4) filtering by

International Journal of General Systems 429

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
y
y
u
b
,
 
B
i
l
a
l
 
M
.
]
 
A
t
:
 
1
4
:
0
6
 
1
2
 
A
p
r
i
l
 
2
0
1
0



giving priority in processing, (5) abstracting by processing messages with less than

complete details, (6) multiple channel processing by simultaneously transmitting

messages over several parallel channels, (7) escape by acting to cut off information input

and (8) chunking by transformation of information in meaningful chunks. These actions

can also be viewed as simplification means to cope with complexity and/or an information

input overload.

Complexity can be viewed to be a product of human perception that is rooted in our

attempt to understand the relationships among matter in terms of mass, energy, entropy

and information. The relationship is schematically depicted in Figure 6. The schematic,

triangular representation shows the laws of mass conservation and energy conservation

and relates mass to energy through Einstein’s law. The energy–entropy relationship might

be controversial; however, thermodynamics may be viewed as an application of Shannon’s

information theory (Jaynes 1957). Thermodynamic entropy is interpreted as being an

estimate of the amount of further Shannon information needed to define the detailed

microscopic state of the system corresponding to a specified macrostate. For example,

adding heat to a system increases its thermodynamic entropy because it increases the

number of possible microscopic states that it could be in, thus making any complete state

description longer. Mass and entropy cannot be credibly related at this stage due to several

challenges including

. the number of microstates which is uncountably infinite,

. continuity and approximations (coarse graining and quantum mechanics),

. state definition versus behaviour function definition and

. the role of Bremermann’s limit for a self-contained system of approximately

2 £ 1047 bits per second per gram.

Understanding complexity and system modelling could enable detailed simulation

including ancestor simulation. Bostrom (2003) posed the question ‘Do we live in an

ancestor-simulation?’ He argues that at least one of the following propositions is true:

. the fraction of human-level civilisations that reach a post-human stage (i.e.

technologically mature) is very close to zero,

. the fraction of post-human civilisations that are interested in running ancestor

simulations is very close to zero or

. the fraction of all the people with our present level of technological maturity who

are living in a simulation is high.

The belief, therefore, that there is a significant chance that we will one day become

post-humans who run ancestor simulations is false, unless we are currently living in a

simulation. Achieving the capability of ancestor simulation requires post-human

computation requirements defined as follows:

. potential capacity – 1042 operations per second for a computer with a mass of the

order of a relatively small planet, smaller than earth,

. human brains – , [1014, 1017] operations per second for the entire human brain

times several billion people,

. memory – it is not a stringent constraint like processing power,

. human sensors – maximum human sensory bandwidth is ,108 bits per second

(negligible),

. environments – they are filled with appropriate scope, granularity and other features

on ad hoc bases and
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. potential demand – 100 billion humans £ 50 years/human £ 30 million

s/year £ [1014, 1017] operations in each human brain per second < [1033, 1036]

operations.

The potential demand of [1033, 1036] operations per second is well within the stated

capacity of 1042 operations per second.

6. Memes and memetics

Table 1 shows potential propositional outcomes for constructing knowledge. A value

judgement on ‘how desirable the outcomes are’ depends on the objective and role of the

analyst. As was stated earlier, scientists working in a laboratory should desire achieving a

state of lasting knowledge gained. On the other hand, an intelligence or propaganda

analyst might desire to feed evidence to adversaries to achieve for them a state of

knowledge illusion. Memes and memetics could offer means to support both objectives.

The word ‘meme’ is a neologism coined by Dawkins (1976) in The Selfish Gene

(although it may have had earlier roots) and is defined as a self-reproducing and

propagating information structure analogous to a gene in biology. Dawkins focused on the

meme as a replicator, analogous to the gene, able to affect human evolution through the

evolutionary algorithm of variation, replication and differential fitness. But in an

application, the relevant characteristics of the meme are that it consists of information

which persists, propagates and influences human behaviour.

Several definitions are available for a meme such as a self-reproducing and

propagating information structure analogous to a gene in biology, or a unit of cultural

transmission (or a unit of imitation) that is a replicator that propagates in the meme pool

leaping from brain to brain via (in a broad sense) imitation, such as tunes, ideas, catch-

phrases, clothes fashions and ways of making pots or of building arches, or cultural

information units that are the smallest elements that replicate themselves with reliability

and fecundity. Finkelstein and Ayyub (2010) provided a pragmatic, functionally useful

description of a meme as information transmitted by any number of sources to at least an

order of magnitude more recipients than sources and propagated during at least 12 h.

Figure 6. Mass, energy, entropy and information.
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A meme is transmitted after either being created in the mind of an individual or

re-transmitted after being received by an individual from elsewhere. Arriving at a new

potential host, the meme is received and decoded. The potential host becomes an actual

host if the meme satisfies certain selection and fitness criteria. The new host replicates and

transmits the meme (perhaps with a different vector, such as a text message instead of

speech). Because the number of memes at any given time exceeds the number of recipients

able to absorb them, fitness criteria determine which meme will survive, propagate, persist

and have impact. The selection and fitness criteria include such human motivators as fear

(e.g. of going to hell or failing in business) and reward (e.g. of going to heaven or

succeeding in business), or the meme might be beneficial in a practical way (such as

instruction on how to make a hard-boiled egg or an improvised explosive device), or the

meme might be entertaining to the recipient, such as a joke (why did the terrorist cross the

road?) or a song (Bomb bomb bomb, bomb bomb Iran’, as sung by presidential candidate

John McCain, as featured on YouTube.com), or it might consist of appreciative direct

feedback to the recipient (such as providing emotional satisfaction, e.g. reinforcement and

pride in membership in a nation, tribe, religion, ethnic group or ideology; Finkelstein and

Ayyub 2010).

To be readily acceptable to the host, the meme should fit existing constructs or belief

systems of the host or be a paradigm to which the host is receptive. Memes also aggregate

and reinforce in complexes (memeplexes) so that a suitable existing framework in the

mind of the host is especially susceptible to a new meme which fits the framework (such as

a new precept by a religious leader being absorbed by a follower of that religion, whereas

it would be ignored or escape notice by a non-follower). Suitable storage capacity, in

memory or media, is necessary for the meme to persist, along with enduring vectors (e.g.

the meme is literally chiselled in stone or reproduced in many, widely distributed copies of

books or electronic media).

New research projects could provide a scientific and quantitative basis for memetics

and an exploration of its prospective applicability and value, possibly discovering whether

brief memes such as ‘axis of evil’, ‘war on terror’ or ‘Winston tastes good like a cigarette

should’ are, in fact, cognitively and functionally different from non-memes such as ‘I like

your hair’ or ‘please pass the salt’.

Further research is needed to enhance our understanding of the nature of memes and

their attributes and to develop simulation methods and simulation environments, that is,

sandboxes, to enable analysts to explore their development and examine their performance

effectiveness in quantifiable metrics and submetrics.

Since Dawkins’ revelation about memes, the concept has attracted a coterie of

proponents, sceptics and opponents. In 30 years, there has been no significant research on

the concept to establish a scientific basis for it – but neither has there been a definitive

refutation. To progress as a discipline with useful applications, memetics needs a general

theory – a theoretical foundation for development of a scientific discipline of memetics.

It needs a narrowly focused, pragmatically useful definition and, ultimately, the ability to

make testable predictions and falsifiable hypotheses. The discrete meme must be defined,

identified and distinguished in the near-continuum of information, just as the discrete gene

can be identified (more or less) in a long string of DNA nucleotides (albeit, with current

technology a gene may not be clearly identifiable). A quantitative basis for memes must be

established, using, for example, such tools as information theory and entropy; genetic,

memetic and evolutionary algorithms; neuroeconomics tools such as functional magnetic

resonance imaging and biochemical analyses and modelling and simulation of social

networks and information propagation and impact (Finkelstein and Ayyub 2010).
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As an example, a transmission probability can be quantified using the following

procedure provided herein for illustration purposes using uncertainty measures (Ayyub

2004, Ayyub and Klir 2006):

. assess the information content of memes (or memeplex) using uncertainty

measures,

. assess the internal inconsistency,

. assess the inconsistency among memes within a host and other memes at potential

hosts,

. assess utilities based on a value structure,

. assess shaping factors based on meme source, timing, complexity, impact, etc.,

. aggregate into an overall successful transmission likelihood.

The steps of this procedure can be impeded in an ancestor simulation as discussed in an

earlier section to explore cultural progression and examine meme-based stimuli in

anthropology.
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