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Abstract: Estimating the economic burden of disasters requires appropriate models that account for key characteristics and decision-making
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United States amount to about $55 billion. Enhancing community and system resilience could lead to significant savings through risk
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Background

Microeconomics plays a central role in informing decisions relating
to enhancing system resilience at the structure, network, commu-
nity, etc. levels. Having structured and consistent thinking across
such diverse systems could lead to significant savings through risk
reduction and expeditious recovery. The management of such re-
duction and recovery requires the development of models for the
economics of resilience. Having models that are applicable across
a broad spectrum of systems ensures consistency and enhances re-
source utilization and defensibility. Current models used in risk
analysis and insurance practices have applicable attributes making
them worthy of consideration (Ayyub 2014a). This paper provides
a review of resilience definitions and metrics and proposes models
for the economics of resilience. These metrics would provide a
sound basis for the development of effective decision-making tools
for multihazard environments.

It is essential to develop models using effective and economi-
cally sound assumptions. Resilience metrics and economic models
should also meet a set of requirements necessary to link them to
other metrics and enable aggregation at a system level. This section
provides important background considerations.

Resilience Definitions

The concept of resilience was formally introduced in ecology, de-
fined as the persistence of relationships within a system (Holling
1973), and measured by the system’s ability to absorb change-state
variables, driving variables, and parameters and still persist. It,
however, appears in different domains ranging from ecology to

psychology and psychiatry to infrastructure systems. Ayyub (2014b)
and Gilbert (2010) provide summaries of definitions by several
reputable entities in their high-impact documents that include the
following as the most prominent ones:
• In the Presidential policy directive on critical infrastructure

security and resilience (PPD-21), (PPD 2013), the “term resi-
lience means the ability to prepare for and adapt to changing
conditions and withstand and recover rapidly from disruptions.
Resilience includes the ability to withstand and recover from
deliberate attacks, accidents, or naturally occurring threats or
incidents.”

• Ayyub (2014b) suggested a resilience definition that builds on
the PPD-21 (PPD 2013) and lends itself for measurement as “the
resilience of a system is the persistence of its functions and per-
formances under uncertainty in the face of disturbances.” This
definition is intended to have a broad use ranging from infra-
structures to networks to communities, and enables the measure-
ment of resilience through metrics by meeting the following
requirements: (1) building on previous notional definitions;
(2) considering initial and residual strength, i.e., capacity and
robustness; (3) accounting for abilities to prepare and plan
for, absorb, recover from or adapt to adverse events; (4) treating
disturbances as events with occurrence rates of stochastic pro-
cesses; (5) permitting the use of several performance attributes;
(6) accounting for changes over time, e.g., aging or improve-
ments; (7) considering full or partial recovery and times to
recovery; (8) considering potential enhancements to system per-
formance after recovery; (9) being compatible with other famil-
iar notions such as reliability and risk; and (10) enabling the
development of resilience metrics with meaningful units.

Resilience Metrics

Any model that purports to identify cost-effective strategies for in-
creasing resilience should be based at some level on a metric for
resilience. Resilience metrics are available as reviewed by Ayyub
(2014b) towards suggesting a generalized metric, shown in Fig. 1.
The figure shows a schematic representation of a system whose
baseline performance is Q, which is a function of time, and is illus-
trated in Fig. 1 as having aging effects. At time of incident, ti, it
might lead to a failure event with a duration Δtf. The failure event
concludes at time tf . The failure event is followed by a recovery
event with a duration Δtr. The recovery event concludes at time tr.
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The total disruption has a duration of Δtd ¼ Δtf þΔtr. The fail-
ure event ðfÞ is illustrated in Fig. 1, and is a function of time from ti
to tf, and represents the loss in performance as a function of time
during the failure event. Similarly, the recovery event (r) is illus-
trated in Fig. 1, and is a function of time from tf to tr, and repre-
sents the recovery in performance as a function of time during the
recovery event.

The model to measure resilience is expressed as

ResillenceðReÞ ¼
ti þ FΔtf þ RΔtr
ti þΔtf þΔtr

ð1Þ

The corresponding failure profile F is measured as follows:

FailureðFÞ ¼
R tf
ti fdtR tf
ti Qdt

ð2Þ

This represents the average performance during the failure
period as a percentage of baseline. The corresponding recovery
profile R is measured as

RecoveryðRÞ ¼
R tr
tf rdtR tr
tf Qdt

ð3Þ

This represents the average performance during the recovery
period as a percentage of baseline. Resilience (Re), then, is approx-
imately a time-weighted average of the performance of the system
through a disaster. The failure-profile value (F) can be considered
as a measure of robustness and redundancy, whereas the recovery-
profile value (R) can be considered as a measure of resourcefulness
and rapidity. The time to failure (tf) can be characterized by its
probability density function computed as follows:

− d
dt

Z ∞
s¼0

exp

�
−λt

�
1 − 1

t

Z
t

τ¼0

FL½αðtÞs�dτ
��

fS0ðsÞds ð4Þ

where failure = when the load on the system (L) exceeds the sys-
tem’s strength (S); both L and S = random variables; FL = cumu-
lative probability distribution function of L; and fS = probability
density function of S. The aging effects are considered in this
model by the term αðtÞ representing a degradation mechanism
as a function of time t. The term αðtÞ can also represent improve-
ment to the system. Eq. (4) is based on a Poisson process with an
incident occurrence, such as loading, rate of λ, and is based on
Ellingwood and Mori (1993). The probability density function of
tf as shown in Eq. (4) is the negative of the derivative of the reli-
ability function.

Fig. 1 shows the losses and costs associated with a disruption
consisting of consequences, recovery cost, and indirect cost. This
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Fig. 1. Modeling resilience (reprinted from Ayyub 2015, © ASCE): (a) definition of resilience; (b) notional probability distributions over the mag-
nitude of costs and direct and indirect losses from disasters
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paper provides models to address the question of how much should
be invested at the present and throughout the system’s life in order
to reduce these consequences and losses in a cost-effective manner.
It will be shown how the economic models relate to these defini-
tions and metrics of resilience.

Economic Valuation and Discount Rates

Total Economic Valuation

Improving the resiliency of a system to meet target levels requires
the examination of system enhancement alternatives in economic
terms within a decision-making framework. Relevant decision-
analysis methods would typically require the examination of resil-
ience based on its valuation by society at large. Methods for
the total economic valuation of resilience are needed and should
satisfy the essential requirement of consistency with respect to
the definition and metrics of resilience. Concepts from risk analysis
and management can be used for this purpose (Ayyub 2014a). The
use of a valuation approach with the following characteristics is
recommended:
• Anthropocentric in nature based on utilitarian principles;
• Consideration of all instrumental values, including existence

value;
• Possess a utilitarian basis to permit the potential for substitution

among different sources of value that contribute to human
welfare;

• Individual’s preferences or marginal willingness to trade one
good or service for another that can be influenced by culture,
income level and information making it time- and context-
specific; and

• Societal values as the aggregation of individual values.
This approach is consistent with National Research Council

(2004) and does not capture nonanthropocentric values, e.g., bio-
centric values (e.g., the intrinsic value of ecosystems, or the value
of some species to the ecosystem of which it is a part) and intrinsic
values as it related to rights (e.g., the intrinsic value of freedom). In
some decisions including environmental policy and law, biocentric
intrinsic values should be included in agreement with previous
practices, e.g., the Endangered Species Act (1973).

A total economic value (TEV) framework can be constructed
based on the preceding characteristics and using individual prefer-
ences and values. The TEV framework is necessary to ensure that
all components of value are recognized and included while avoid-
ing double counting of values (Bishop et al. 1987; Randall 1991).
Economic valuation, as commonly used in decision analysis, is de-
fined as the worth of a good or service as determined by the market.
Economists have dealt with this concept initially by estimating the
value of a good to an individual alone, and then extend it broadly as
it relates to markets for exchange between buyers and sellers for
wealth maximization.

An economic measure of the value of a good or the benefit from
a service can be defined as the maximum amount a person is willing
to pay for this good or service. The concept of willingness to pay
(WTP) is central to economic valuation. An alternate measure is the
willingness to accept (WTA) of an amount by the person to forgo
taking possession of the good or receiving the service. WTP and
WTA produce amounts that are expected to be close; however, gen-
erally WTA generated amounts are greater than WTP generated
amounts due primarily to income levels and affordability factors.
The valuation of resilience can be based on the savings in potential
direct and indirect losses as well as cost of recovery as illustrated in
Fig. 1. Alternatives for enhancing resilience that can reduce these

potential losses can be analyzed using models for benefit–cost
analysis (Ayyub 2014a).

Choosing Planning Horizons and Discount Rates

Models for the economics of resilience require the consideration of
time and the time-value of money. The bases of such a consider-
ation are a planning horizon and a discount rate that are necessarily
independent of each other.

The planning horizon impacts the results in a number of ways.
Use of a fixed planning horizon either requires the assumption that
mitigation measures last for the duration of the planning period and
cease to be effective at the end of it, or they require careful esti-
mation of their residual value [ASTM E917-13 (ASTM 2013)
for a more-detailed discussion of the handling of residual values].
An infinite planning horizon usually requires assuming that miti-
gation measures are renewed indefinitely and typically requires the
cost of replacement to be accounted for. If these issues are not prop-
erly accounted for, then the estimate of the present expected value
net benefits will be biased. If, for example, the beneficial effects of
a mitigation measure extend beyond the end of the planning period
and the residual value is not properly accounted for, then the model
will underestimate the benefits. If a mitigation measure loses its
effectiveness or is replaced by a different mitigation measure before
the end of the (potentially infinite) planning horizon and the mod-
eled stream of benefits does not reflect that, then the model will
overestimate its net benefits.

Ayyub (2014a) provides guidance on choosing an appropriate
discount rate. It should be based on the situation under consider-
ation. A discount rate associated with a highway system might be
different than the discount rate associated with growing the global
energy generation capacity with global climate change considera-
tions. In both example cases, cost–benefit analysis can be used and
two different rates can be justified. See Rambaud et al. (2005) for a
more-complete discussion of the issues involved in discount rates
for long-term projects.

The discount rate is a fundamental assumption for estimating the
value, e.g., net present value, of developing and enhancing highway
systems, power plants, schools, environmental protections, etc.,
and associated potential losses and costs. Decision-makers or pol-
icy-makers must quantify the social marginal cost and the social
marginal benefit for each project and compare these projects in or-
der to allocate limited resources. The discount rate appears in both
sides of a cost–benefit analysis, i.e., future costs such as mainte-
nance and future benefits such as reduced pollution emissions.
Generally calculating the marginal cost is easier than measuring
the marginal benefit. Also, the uncertainty in the former is smaller
than in the latter. The examination of the effects including benefits
require valuating time of people affected, human health and safety,
ecological impacts, etc., that have differing time periods associated
with the respective effects. A primary issue arises also in decisions
spanning multiple generations, creating many situations of mis-
match between generations bearing the costs and those generations
reaping the benefits.

In risk studies that do not have significant social or society-wide
impacts, economic efficiency dictates the use of a discount rate
representing the opportunity cost of what else an entity, e.g., a
decision-maker, could accomplish with those same funds used to
cover the costs of an alternative selected. For example, if the funds
could be instead used to invest in the private sector yielding 3% as
the next best alternative for using the funds, then 3% would be the
discount rate.

In the case of social-project funding, justifiably choosing
discount rates requires making ethically subtle choices about the
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benefits to others. For example, nowadays consumption could im-
pact future generations due to global change in temperature. In this
case, choosing a discount rate for the costs and benefits of reducing
CO2 emissions and other harmful greenhouse gases is very impor-
tant and could drive alternatives considered and decisions made.
The discount rate for cost–benefit analysis ranges from 1.4 to about
3% based on various considerations. The small discount rate is
from the Stern Review on the Economics of Climate Change (Stern
2006) The U.S. Office of Management and Budget (OMB) pro-
vides guidance on this matter and uses a pretax discount rate of
7% as an example in its Circular No. A-94 for benefit-cost analysis
of federal programs (U.S. General Accounting Office 1992) and
Rushing et al. (2013) provide additional guidance on discount rates
for life cycle cost analysis.

Basic Economic Model

The basic economic model balances costs and benefits from the
implementation of disaster-mitigation measures. The economic
model starts by recognizing that disasters impose losses on a com-
munity when they occur. Disaster-mitigation measures are intended
to reduce losses from disasters. The objective of an economic
model of disaster resilience is to enable a community to identify
cost-effective mitigation measures. This paper follows Vugrin et al.
(2009) in distinguish between losses and response and recovery
costs. Losses are damages caused directly or indirectly by the dis-
aster. They would include, among other things, capital losses,
deaths and injuries resulting from the disaster, and business inter-
ruption costs. Response and recovery costs are those costs incurred
by a community in the time around the time of the disaster whose
purpose is to mitigate the losses from the disaster and return the
community to normalcy. They would include, among other things,
costs from emergency response during the disaster, bottled water if
the water supply is interrupted, and debris removal.

Costs are also associated with disaster planning, prevention,
mitigation, response, and recovery. What mainly distinguishes mit-
igation costs from response and recovery costs is that mitigation
costs occur on an ongoing basis, while response and recovery costs
are specific to the time in and around a disaster. Mitigation costs
include things like the incremental costs of disaster-resilient build-
ing codes, maintenance of Emergency Operations Centers, etc.
Response and recovery costs include things like emergency re-
sponse during disasters, cleanup, and temporary housing.

Benefits are the reduction in losses and response and recovery
costs that result from the implementation of a mitigation plan.

Since the objective is to find cost-effective strategies for increas-
ing resilience, this should be relatable back to the definition of the
resilience metric. One way of doing so would define the recovery
costs and losses as

DiðPÞ þ RiðPÞ ¼
Z

tr

ti

Qdt −
Z

tr

ti

fdt −
Z

tr

ti

rdt ð5Þ

For any mitigation plan, the net benefit is

JðPÞ ¼ EfL½DðP0Þ; k� − L½DðPÞ; k� −X
t

Cðt;PÞe−ktg ð6Þ

where E = expected value operator. The difference in costs
and losses represents the fact that it is the changes from the
status quo that a particular mitigation plan represents that are of
interest. In some cases, the reduction in disaster costs and losses,
L½DðP0Þ; k� − L½DðPÞ; k�, will be referred to as savings.

Since the choices are forward-looking—it is future costs and
future losses that are of interest—the exact values of many of
the terms are uncertain. Timings of future disasters and their asso-
ciated losses are uncertain. Response and recovery costs associated
with those disasters are also uncertain. In many cases, the future
costs of selected mitigation measures are uncertain.

The typical approach for handling this uncertainty is to base
decisions on the expected value of the present value of the future
net benefits. The expected value is essentially the average of all
possible ranges of future values, weighted for their probability. In
order to compute the expected value the probabilities of the pos-
sible outcomes need to be identified.

It is sometimes useful to distinguish between five different
levels of uncertainty. They form a continuum from the fully known
to the completely unknown. Each level of uncertainty will now be
discussed.

Something that is known has no uncertainty associated with it.
In general, contractual payments and bond payments are known.
Their timing and amount is fixed in advance.

Something with well-characterized uncertainty is something for
which the value is not known in advance, but has a known and well-
defined probability distribution. Hazards often fit this category. It is
not known in advance when a hazard will strike or how much dam-
age it will do when it does. But there are often well-defined prob-
ability distributions over hazards. For example with earthquakes the
USGS has developed maps giving the peak ground acceleration
with a 10% chance of exceedance in 50 years for most of the United
States.

Something that is ambiguous is something for which the exact
probability distribution is unknown, but for which a set of prob-
ability distributions could be identified. The discount rate any
particular community prefers is not known, nor is there a well-
defined probability distribution for the discount factor that is
known to the literature. However plausible bounds can be put on
the discount factor, which makes it possible to define a set of
plausible probability distributions over the value of the discount
factor.

Poorly-defined uncertainty applies to items where it is difficult
to even construct a probability distribution. Model uncertainty is an
example. With model uncertainty the range of possible (or even
plausible) models is very large and difficult to define. Defining
a probability distribution over those plausible models (let alone a
range of distributions) is not a practical possibility.

Unknowns are things of whose existence the decision-maker is
not even aware—i.e., the so-called unknown unknowns.

In general, a local community is interested in identifying the
most cost effective mitigation plan. That is, a community is inter-
ested in solving the following problem:

maxP∈PJðPÞ ð7Þ

Loss Models

This paper introduces and compares two different loss models, a
Discounted Model and an Insurance Model (Ayyub 2014a). These
two models were selected because they are commonly used in eco-
nomics and in the insurance industry.

The loss models have a number of features in common. In par-
ticular, they both make the following assumptions about the occur-
rence and magnitude of disasters:
1. Disaster damages and times between disasters are independent

of each other; and
2. The occurrence of disasters follows a Poisson process, with rate

parameter λ.
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λ is approximately equal to the inverse of the return interval for
the disaster.

Both loss models assume that there is a planning period, Tmax,
over which the analysis is considered, although the Discounted
Model allows for the possibility that Tmax is infinite.

Discounted Loss Model

For the first model, losses are the discounted sum of disaster losses
over the planning period

L½DðPÞ; k� ¼
X

i∈IðTmaxÞ
½DiðPÞ þ KiðPÞ�e−kTi ¼

X
i∈IðTmaxÞ

SiðPÞe−kTi

ð8Þ
The two assumptions provided above result in the following

theorem:
Theorem 1: Given Assumptions 1 and 2 defined earlier, the

expected value and variance of disaster losses when k > 0 and
Tmax < ∞ for the Discounted Model are

V̄1ðP;Tmax;λ; kÞ ¼
λ
k
ð1 − e−kTmaxÞS̄ðPÞ ð9Þ

and

σ2
1ðP;Tmax; λ; kÞ ¼

λ
2k

ð1 − e−2kTmaxÞ½σ2
SðPÞ þ S̄2ðPÞ� ð10Þ

For the special case where Tmax is infinite, this becomes

V̄1ðP;∞; λ; kÞ ¼ λ
k
S̄ðPÞ ð11Þ

and

σ2
1ðP;∞;λ; kÞ ¼ λ

2k
½σ2

SðPÞ þ S̄2ðPÞ� ð12Þ

And for the special case where the discount factor k goes to zero,
this becomes:

V̄1ðP;Tmax;λ; 0Þ ¼ λTmaxS̄ðPÞ ð13Þ
and

σ2
1ðP;Tmax; λ; 0Þ ¼ λTmax½σ2

SðPÞ þ S̄2ðPÞ� ð14Þ

Proof is in Appendix I.

Insurance Loss Model

The insurance industry has developed its models and practices
for building business cases for new insurance products and updat-
ing these models using Bayesian methods. The basic Insurance
model is

L½DðPÞ; k� ¼
X

i∈IðTmaxÞ
DiðPÞ þ KiðPÞ ¼

X
i∈IðTmaxÞ

SiðPÞ ð15Þ

The Insurance Model also adds the following two additional
assumptions
3. The probability distribution over damages, FS, is a normal dis-

tribution with mean μðPÞ, and standard deviation, σðPÞ; and
4. The actual value of the Poisson Parameter, λ, is subject to well-

characterized uncertainty, with a probability distribution fλ.
Up through Assumption 3, this is just a special case of the Dis-

counted Model above, with discount factor, k, set to zero and a

distribution specified for damages. The inclusion of Assumption
4 serves as an extension to the Discounted Model.

That leads to Theorem 2, which is based on the development in
Ayyub (2014a):

Theorem 2: Given Assumptions 1 through 3 given previously,
the cumulative probability distribution of losses for the Insurance
Model is

F½s; λTmax;μðPÞ;σðPÞ�

¼
X∞
n¼0

e−λTmax
ðλTmaxÞn

n!
FS½s; nμðPÞ;

ffiffiffi
n

p
σðPÞ� ð16Þ

with mean and standard deviation given by Eqs. (8) and (9).
Given Assumptions 1 through 4, the cumulative probability dis-

tribution of losses for the Insurance Model (after taking expectation
over λ) is

F½s;Tmax;μðPÞ;σðPÞ� ¼
Z ∞
0

F½s;λTmax;μðPÞ;σðPÞ�fλðλÞdλ
ð17Þ

Proof is in Appendix II.
Since differentiation is a linear operator, Eq. (15) could be re-

written by replacing the cumulative distribution functions with the
probability distribution functions without making any further
changes.

Comparison of the Loss Models

In interpreting the preceding results, it is worth noting that λS̄ðPÞ
and λμðPÞ are the average annual losses in the two loss models.
Similarly, λS̄ðPÞTmax and λμðPÞTmax are the average losses in
the two loss models that would occur over a period of Tmax years.

There are a few key differences between these loss models:
1. The Discounted Model explicitly accounts for discounting over

time, while the Insurance Model does not discount time at all;
2. The Discounted Model makes no assumption about the damage

distribution, while the Insurance Model explicitly assumes that
damages are normally distributed;

3. The Discounted Model assumes a fixed λ, while the Insurance
Model explicitly assumes a distribution for λ; and

4. The Discounted Model simply develops the expected value,
while the Insurance Model explicitly develops a probability dis-
tribution over damages. The assumption of Normality for the
damage distribution is what allows a closed-form solution to
the probability distribution of losses to be identified.

Discussion of the Assumptions

Assumptions 1 and 2 listed earlier are certainly incorrect, but their
impact on the overall results is likely to be minimal. Weather-
related hazards are correlated across time, and fire and geologic
events tend to have reduced probabilities of occurrence after major
events. Earthquake magnitude is correlated with time since the pre-
vious event. These could be modeled, for example, by assuming
that the time between events follows a Weibull distribution, or more
generally by assuming that the time between events is governed by
a known hazard function. Neither alternative approach will result in
a simple close-form solution and, given the information that is
likely to be available, Assumptions 1 and 2 will probably provide
as good an approximation to the actual disaster sequence as any
other that could be made.

The assumption of normality for damages, used in the Insurance
Model is also certainly wrong when applied to disasters. Damage
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values are very highly skewed and nonnegative. On the other hand,
the assumption allows for a major simplification of the model. In
particular, it allows a closed-form expression to be used for the
probability distribution over the net present value of losses. The
normality assumption is not required to develop a probability dis-
tribution over net present value of losses using the model with dis-
counting, but without the assumption of normality determination of
the distribution of losses typically requires the use of Monte Carlo
techniques.

The impact of the fourth assumption, that the rate at which
disasters occur is itself unknown and subject to well-characterized
uncertainty, will depend on the distribution used. One that would
likely be applied would be a uniform distribution. As with the
earlier assumption, any inaccuracy that brings will likely be min-
imal, at least when compared to any other assumption that could
be made.

The Discounted Model assumes that future costs and benefits
are discounted relative to the present, while the Insurance Model
does not discount future cash flows. For very short time planning
periods, the difference between the two loss models will be minimal,
but for the longer planning periods that are likely to be used in evalu-
ating disaster resilience projects, the differences will be significant.

Examples

These examples illustrate the economic model and demonstrate the
similarities and differences of the loss models.

Suppose that a city is considering an investment in a disaster
mitigation project. The project will cost $10 million, have $0.5 mil-
lion in annual operations and maintenance costs, and have a life-
time of 30 years. For the sake of simplicity, it is assumed here that
the costs are known, however that will typically not be the case.
When costs have some degree of uncertainty associated with them,
it will need to be accounted for in the analysis of the proposed
project.

Here estimated savings from the mitigation measures are used.
Given the assumptions defined in preceding sections, it can be
shown that the equations in Theorem 1 apply directly to savings,
reducing the computational effort required.

In this example, two cases are considered. In Case 1, disasters
are rare but relatively large, while in Case 2 disasters are relatively
common but small. Details of the disaster occurrence and value of
savings are listed in Table 1.

Table 2 lists the present expected value for costs and the present
expected value for savings using the Discounted Model for a
variety of discount rates. A plot of costs and savings versus dis-
count rate is also shown in Fig. 2. In Case 1, the expected savings
for the proposed mitigation measure exceed the present value of
costs for any discount rate less than about 3%, while in Case 2, the
savings exceeds costs for discount rates below about 6.4%. Costs
are less responsive to discount rates because a large portion of the
costs of the mitigation plan are incurred up front, while disasters
(and hence losses and savings) are entirely future.

Remembering that the Insurance Model is a special case of the
Discounted Model, the present expected values of savings for the
Insurance Model are listed in line 1 of Table 2. It is important when
using the Insurance Model to use the same discount rate of zero for
costs as for savings. So the appropriate value of costs for compari-
son is also that on Line 1 of Table 2.

The Insurance Model also allows probability distributions over
savings to be computed. Probability distributions for savings for the
proposed mitigation measure are included as Figs. 3 and 4. Fig. 3
shows the probability density of savings (note that in both cases,
there is a nonzero probability that zero damages will occur, which is
not displayed on the figure). Fig. 4 shows the cumulative probabil-
ity density function for savings. On both figures, the cost of the
proposed mitigation measure is included for reference. For Case
1, savings will exceed costs 45% of the time, while for Case 2,
savings will exceed costs 89% of the time.

Table 1. Expected Savings from Mitigation Measure

Case λ Reduction in losses ($ millions) σ

Case 1 0.02 50 8
Case 2 0.5 2.5 1

Table 2. Expected Present Value of Costs and Savings for the Two Loss
Cases for Various Discount Rates

Discount
rate (%)

Savings ($)

Costs Case 1 Case 2

0.0 25.00 30.00 37.50
1.4 22.15 24.46 30.58
3.0 19.70 19.70 24.63
6.39 16.31 13.05 16.31
7.0 15.89 12.22 15.27
10.0 14.31 9.09 11.36

Fig. 2. Costs and savings versus discount rate

Fig. 3. Probability distribution of costs and savings using the insurance
model

© ASCE 04016003-6 ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.

 ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng., 04016003 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

B
ila

l A
yy

ub
 o

n 
05

/0
4/

16
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



A simple sensitivity analysis of the expected value of savings for
the Discounted Model is included in Tables 3 and 4. For each case,
notional upper and lower bounds were used for each of the input
variables (holding all the other variables constant). The sensitivity
analysis provides a sense of which variables have the greatest im-
pact on the results (taking into account the degree of certainty re-
garding each of the variables), and provides a sense of how much
variation is associated with the level of uncertainty in the problem.
Since the Insurance Model is a special case of the Discounted
Model, the first line in Tables 3 and 4 represent the sensitivity of
the expected value of savings for the Insurance Model.

A more-detailed analysis of the sensitivity to the input variables
(results not shown) indicates that increasing k decreases the sensi-
tivity to all the input variables. Increasing λ, and μ (or S̄) increases
sensitivity to all input variables. Increasing Tmax increases sensitiv-
ity to all terms except Tmax itself, where increasing Tmax actually
decreases the sensitivity.

Conclusions

Significant savings could be realized by enhancing the resilience
of a system, including buildings, infrastructure, networks, and
communities, through risk reduction and expeditious recovery.

However care must be taken to ensure that measures taken to
enhance resilience are cost-effective. This paper describes an eco-
nomic model to estimate the costs versus the savings from proposed
measures for enhancing disaster resilience, introduces two loss
models for valuing the performance of a system, provides simple
expressions for their computation, and provides an illustrative ex-
ample of the workings of the economic model.

The Discounted Model assumes that costs and losses from
disasters are independent and identically distributed, and occur ac-
cording to a Poisson process with a fixed, known rate. Otherwise, it
makes no assumption about the distribution of damages. The Insur-
ance Model adds the assumption that costs and losses follow a nor-
mal distribution, ignores discounting over time, and assumes that
the disaster rate is unknown, but with a known probability distri-
bution. Based on those assumptions, this paper develops simple
expression for the expected value and variance of the present
expected value of damages. In addition, for the Insurance Model,
it develops an expression for the probability distribution over
damages.

The assumptions of independence and Poisson are certainly in-
correct, but their impact on the overall results is likely to be minimal.
Given the information that is likely to be available, these assumptions
will probably provide as good an approximation to the actual disaster
sequence as any other that could be made, and they allow the ex-
pected net present value of costs and losses to be expressed with
a set of simple closed-form expressions.

The assumption of normality for damages, used in the Insurance
Model, is also certainly wrong when applied to disasters. However,
it allows for a major simplification of the model by allowing a
closed-form expression to be used for the probability distribution
over the net present value of losses. The use of nonnormal prob-
ability distributions would require solving convolution integrals as
provided by Ayyub (2014a).

In summary, the expressions developed in this paper will sim-
plify evaluating the cost-effectiveness of resilience-improving mea-
sures and thus help communities improve their resilience.

Appendix I. Theorem 1

Given Assumptions 1 and 2 stated earlier, the expected value
and variance of disaster losses when k > 0 and Tmax < ∞ for the
Discounted Model are

V̄1ðP;Tmax;λ; kÞ ¼
λ
k
ð1 − e−kTmaxÞS̄ðPÞ ð18Þ

and

σ2
1ðP;Tmax;λ; kÞ ¼

λ
2k

ð1 − e−2kTmaxÞ½σ2
SðPÞ þ S̄2ðPÞ� ð19Þ

For the special case where Tmax is infinite, this becomes

V̄1ðP;∞;λ; kÞ ¼ λ
k
S̄ðPÞ ð20Þ

and

σ2
1ðP;∞; λ; kÞ ¼ λ

2k
½σ2

SðPÞ þ S̄2ðPÞ� ð21Þ

And for the special case where the discount factor k goes to zero,
this becomes

V̄1ðP;Tmax;λ; 0Þ ¼ λTmaxS̄ðPÞ ð22Þ

Fig. 4. Cumulative distribution function of costs and savings using the
insurance model

Table 3. Sensitivity Analysis for Case 1

Discount
rate (%)

λ ¼ 0.01
($)

λ ¼ 0.05
($)

T ¼ 25

($)
T ¼ 35

($)
μ ¼ 45

($)
μ ¼ 55

($)

0.0 15.00 75.00 25.00 35.00 27.00 33.00
1.4 12.25 61.24 21.09 27.67 22.05 26.95
3.0 9.91 49.54 17.62 21.71 17.84 21.80
7.0 6.27 31.34 11.80 13.05 11.28 13.79
10.0 4.75 23.76 9.18 9.70 8.55 10.45

Table 4. Sensitivity Analysis for Case 2

Discount
rate (%)

λ ¼ 0.4
($)

λ ¼ 0.6
($)

T ¼ 25

($)
T ¼ 35

($)
μ ¼ 2

($)
μ ¼ 3

($)

0.0 30.00 45.00 31.25 43.75 30.00 45.00
1.4 24.50 36.74 26.37 34.59 24.50 36.74
3.0 19.82 29.73 22.02 27.14 19.82 29.73
7.0 12.54 18.80 14.75 16.32 12.54 18.80
10.0 9.50 14.25 11.47 12.12 9.50 14.25
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and

σ2
1ðP;Tmax; λ; 0Þ ¼ λTmax½σ2

SðPÞ þ S̄2ðPÞ� ð23Þ

Proof: To simplify notation, the reference to plan (P) will be
dropped throughout.

First the expected value of the case where Tmax is infinite is com-
puted. That is, the value of the following equation is determined:

V̄ ¼ E

�X∞
i¼1

Sie−kTi

�
ð24Þ

where, for now, it is assume that k is strictly positive.
For convenience, define the following random variables:

VHðtÞ ¼
X∞
i¼1

IfTi > tgSie−kðTi−tÞ ð25Þ

VLðtÞ ¼
X∞
i¼1

IfTi ≤ tgSie−kðTi−tÞ ð26Þ

Vn ¼
X∞
i¼n

Sie−kðTi−Tn−1Þ ð27Þ

where If·g = indicator function; VHðtÞ = value of all disaster oc-
curring after time t; VLðtÞ = value of all disaster occurring up to and
including time t; and Vn = value of all disasters from the nth dis-
aster on. In all cases value is determined from the perspective of
time t, or the n − 1th disaster. Now Eq. (27) is used to rewrite
Eq. (24) as

V̄ ¼ EfðS1 þ V2Þe−kT1g ð28Þ

Since, by Assumption 1, all values for damage and time-
between are independent of each other, then S1, T1 and V2 are
independent of each other. So

V̄ ¼ ½EðS1Þ þ EðV2Þ�Efe−kT1g ð29Þ
Or

V̄ ¼ ½S̄þ EðV2Þ�Efe−kT1g ð30Þ

Since, by Assumption 1, the times-between and damages are all
independent of each other

EðV1Þ ¼ EðV2Þ ¼ EðViÞ ¼ E½VHðtÞ� ¼ V̄ ð31Þ

That gives

V̄ ¼ ðS̄þ V̄ÞEfe−kT1g ð32Þ

which can also be expressed as

V̄ ¼ ðV̄ þ S̄Þ
Z ∞
0

e−kTfðTÞdT ð33Þ

By Assumption 2, the disaster sequence is a Poisson process, so
the time between events is an exponential distribution. Then this
expression becomes

V̄ ¼ ðV̄ þ S̄Þ
Z ∞
0

λe−kTe−λTdT ð34Þ

Working out the math, this becomes

V̄ ¼ λ
kþ λ

ðV̄ þ S̄Þ
Z ∞
0

ðkþ λÞe−ðkþλÞTdT ð35Þ

V̄ ¼ − λ
kþ λ

ðV̄ þ S̄Þe−ðkþλÞT
�∞
0

ð36Þ

V̄ ¼ λ
kþ λ

ðV̄ þ S̄Þ ð37Þ

V̄

�
1 − λ

kþ λ

�
¼ λ

kþ λ
S̄ ð38Þ

This then becomes

V̄ ¼ λ
k
S̄ ð39Þ

which is Eq. (20)
To determine the present expected value of any disasters occur-

ring before a specified point of time, Tmax, this can be easily ob-
tained by subtracting out the discounted value at time Tmax. That is

V̄ðtÞ¼E½V1−VHðtÞe−kTmax � ¼ V̄− V̄e−kt ¼λ
k
S̄ð1−e−kTmaxÞ ð40Þ

which is Eq. (18).
Variance can be determined similarly.
Let

σ2
V ¼ VarðVÞ ¼ Var

�X∞
i¼n

Sie−kT1

�
ð41Þ

Once again, inserting Eq. (27) into Eq. (41) gives

σ2
V ¼ VarðVÞ ¼ VarfðS1 þ V2Þe−kT1g ð42Þ

Or

σ2
V ¼ EfðS1 þV2Þ2e−2kT1g− V̄2

¼ EfðS21 þ 2S1V2 þV2
2Þe−2kT1g− V̄2

¼ Ef½ðS21 − S̄2Þ þ 2S1V2 þ ðV2
2 − V̄2Þ þ S̄2 þ V̄2�e−2kT1g− V̄2

ð43Þ

Again, independence (Assumption 1) makes it possible to evalu-
ate the expectation of each term separately

¼ ½EðS21 − S̄2Þ þ 2EðS1ÞEðV2Þ þ EðV2
2 − V̄2Þ þ S̄2

þ V̄2�Efe−2kT1g − V̄2 ð44Þ

¼ ½σ2
S þ 2S̄ V̄þEðV2

2 − V̄2Þ þ S̄2 þ V̄2�Efe−2kT1g − V̄2 ð45Þ

And again, since this is an infinite sequence where damages and
times-between are independent

EðV2 − V̄2Þ ¼ EðV2
1 − V̄2Þ ¼ EðV2

2 − V̄2Þ ¼ EðV2
i − V̄2Þ ¼ σ2

V

ð46Þ
So this becomes

σ2
V ¼ ðσ2

S þ σ2
V þ S̄2 þ 2SV þ V̄2ÞEfe−2kT1g − V̄2 ð47Þ

Again, since times between follow an exponential distribution
(Assumption 2), this becomes

© ASCE 04016003-8 ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.

 ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng., 04016003 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

B
ila

l A
yy

ub
 o

n 
05

/0
4/

16
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



σ2
V ¼ ðσ2

S þ σ2
V þ S̄2 þ 2SV þ V̄2Þ

Z ∞
0

λe−2kTe−λTdT − V̄2 ð48Þ

σ2
V ¼ λ

2kþ λ
ðσ2

S þ σ2
V þ S̄2 þ 2S̄ V̄þV̄2Þ

Z ∞
0

ð2k

þ λÞe−ð2kþλÞTdT − V̄2 ð49Þ

σ2
V ¼ λ

2kþ λ
ðσ2

S þ σ2
V þ S̄2 þ 2S̄ V̄þV̄2Þ − V̄2 ð50Þ

Or

σ2
V

�
1 − λ

2kþ λ

�
¼ λ

2kþ λ
ðσ2

S þ S̄2 þ 2S̄ V̄Þ − V̄2

�
1 − λ

2kþ λ

�

ð51Þ

σ2
V

2k
2kþ λ

¼ λ
2kþ λ

ðσ2
S þ S̄2 þ 2S̄ V̄Þ − V̄2

2k
2kþ λ

ð52Þ

σ2
V ¼ λ

2k
ðσ2

S þ S̄2 þ 2S̄ V̄Þ − V̄2 ð53Þ

Substitute the expression for V̄ from Eq. (39)

σ2
V ¼ λ

2k

�
σ2
S þ S̄2 þ 2S̄

λ
k
S̄

�
−
�
λ
k
S̄

�
2

ð54Þ

σ2
V ¼ λ

2k
σ2
S þ

λ
2k

�
kþ 2λ

k

�
S̄2 − λ2

k̄2
S2 ð55Þ

σ2
V ¼ λ

2k
σ2
S þ

�
λ
2k

þ λ2

k̄2
− λ2

k̄2

�
S̄2 ð56Þ

Or

σ2
V ¼ λ

2k
σ2
S þ

λ
2k

S̄2 ¼ λ
2k

ðσ2
S þ S̄2Þ ð57Þ

which is Eq. (21).
Again, to get the variance for a fixed time interval, partition V

and take the variance

σ2
V ¼ VarðVÞ ¼ Var½VLðTmaxÞ þ VHðTmaxÞe−kTmax � ð58Þ

Since, by Assumption 1, VLðTmaxÞ and VHðTmaxÞ are indepen-
dent for fixed Tmax, and for any two independent random variables,
X and Y, VarðX þ YÞ ¼ VarðXÞ þ VarðYÞ, this becomes

σ2
V ¼ Var½VLðTmaxÞ� þ Var½VHðTmaxÞe−kTmax � ð59Þ

Furthermore, σ2
VðTmaxÞ ¼ Var½VLðTmaxÞ� is the expression

whose value is to be determined

σ2
V ¼ σ2

VðTmaxÞ þ Var½VHðTmaxÞe−kTmax � ð60Þ

Expanding the remaining term

σ2
V ¼ σ2

VðTmaxÞ þ Ef½VHðTmaxÞe−kTmax �2g
− fE½VHðTmaxÞe−kTmax �g2 ð61Þ

Since Tmax is fixed and nonstochastic, it can be pulled out of the
expression

σ2
V ¼ σ2

VðTmaxÞ þ ðEf½VHðTmaxÞ�2g − fE½VHðTmaxÞ�g2Þe−2kTmax

ð62Þ

σ2
V ¼ σ2

VðTmaxÞ þ Var½VHðTmaxÞ�e−2kTmax ð63Þ

And as discussed earlier, σ2
V ¼ Var½VHðTmaxÞ�, so this becomes

σ2
V ¼ σ2

VðTmaxÞ þ σ2
Ve

−2kTmax Or

σ2
VðTmaxÞ ¼ σ2

Vð1 − e−2kTmaxÞ ¼ λ
2k

ðσ2
S þ S̄2Þð1 − e−2kTmaxÞ

ð64Þ

which is Eq. (19).
As far as the case where k ¼ 0, the following limit argument

gives an expression for V̄ðTmaxÞ and σ2
VðTmaxÞ when k ¼ 0.

Starting with Eq. (40) from above

V̄ðTmaxÞ ¼
λ
k
S̄ð1 − e−kTmaxÞ ð65Þ

Using L’Hôpital’s rule (A. Pantelous, personal communication,
2015):

lim
k→0

V̄ðTmaxÞ ¼ λS̄ lim
k→0

1 − e−kTmax

k
¼ λS̄ lim

k→0

Tmaxe−kTmax

1

¼ λS̄Tmax lim
k→0

e−kTmax ð66Þ

Take the limit as k → 0, this becomes

lim
k→0

V̄ðTmaxÞ ¼ S̄λTmax ð67Þ

Which is Eq. (22).
Similarly for σ2

VðTmaxÞ

lim
k→0

σ2
VðTmaxÞ ¼ λðσ2

S þ S̄2Þlim
k→0

1 − e−2kTmax

2k

¼ λðσ2
S þ S̄2Þlim

k→0

2Tmaxe−2kTmax

2

¼ λðσ2
S þ S̄2ÞTmax lim

k→0
e−2kTmax ð68Þ

So

lim
k→0

σ2
VðTmaxÞ ¼ ðσ2

S þ S̄2ÞλTmax ð69Þ

Which is Eq. (23).

Appendix II. Theorem 2

Given Assumptions 1 through 3 as stated earlier, the cumulative
probability distribution of losses for the Insurance Model is

F½s; λTmax;μðPÞ;σðPÞ�

¼
X∞
n¼0

e−λTmax
ðλTmaxÞn

n!
FS½s; nμðPÞ;

ffiffiffi
n

p
σðPÞ� ð70Þ

with mean and standard deviation given by Appendix I.
Given Assumptions 1 through 4, the probability distribution of

losses for the Insurance Model (after taking expectation over λ) is
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F½s;Tmax;μðPÞ; σðPÞ� ¼
Z ∞
0

F½s;λTmax;μðPÞ; σðPÞ�fλðλÞdλ
ð71Þ

Proof: The sum of n independent random variables distributed
as Nðμ;σÞ has the cumulative probability distribution Nðnμ; ffiffiffi

n
p

σÞ.
Again, to simplify notation, the reference to plan (P) is dropped
throughout.

Since disasters are a Poisson process with rate parameter, λ, then
the probability that n disasters will occur is

e−λt ðλtÞ
n

n!
ð72Þ

And the cumulative probability distribution is

Fðs;λt;μ; σÞ ¼ Pfn ¼ 0g þ Pfn ¼ 1gFSðs;μ; σÞþ · · ·

þ Pfn ¼ mgFSðs; nμ;
ffiffiffi
n

p
σÞþ · · · ð73Þ

or

Fðs; λTmax;μ; σÞ ¼
X∞
n¼0

e−λTmax
ðλTmaxÞn

n!
FSðs; nμ;

ffiffiffi
n

p
σÞ ð74Þ

which is Eq. (70). Since all the conditions of Theorem 1 apply,
mean and standard deviation will be as determined in Appendix I.

Taking the expectation over λ, then, is simply

F½s;Tmax;μðPÞ; σðPÞ� ¼
Z ∞
0

F½s;λTmax;μðPÞ; σðPÞ�fλðλÞdλ
ð75Þ

which is Eq. (71).
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Notation

The following symbols are used in this paper:
Cðt;PÞ = costs as a function of time. Costs are specific to the

mitigation plan and are defined relative to the status
quo. That is, by definition the costs associated with
the status quo plan are zero;

DiðPÞ = loss from the ith disaster, losses depend on the
mitigation plan. Since the disasters are in the future,
this is a random variable;

DðPÞ = sequence of disasters, where
DðPÞ ¼ fTi;DiðPÞ;KiðPÞg∞i¼1. This is a random
sequence;

IðTmaxÞ ¼ fijTi ≤ Tmaxg = set of all disasters that occur before
time Tmax;

KiðPÞ = response and recovery costs from the ith disaster.
Response and recovery costs depend on the
mitigation plan. Since the disasters are in the future,
this is a random variable;

k = discount rate;
L½DðPÞ; k� = present expected value of costs and losses as a

function of the (stochastic) damage sequence, the
mitigation plan, and the discount factor;

P ∈ P = some specific mitigation plan;
P0 ∈ P = status quo mitigation plan;
SiðPÞ = DiðPÞ þ KiðPÞ, which is the total cost (including

both losses and response and recovery costs) from
the ith disaster given mitigation plan P;

S̄ðPÞ = E½SiðPÞ� is the expected total cost of a disaster
given plan P;

Ti = time of the ith disaster. Since the disasters are in the
future, this is a random variable;

Tmax = planning period over which the analysis is
considered; and

P = set of all possible mitigation plans. This includes
any set of choices that could affect losses from
disasters, including building codes, training of
emergency response personnel, building and
operation of an Emergency Operations Center, etc.
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